Вопрос 2. Аксиомы стереометрии
Первая аксиома стереометрии
Аксиомы стереометрии.
Аксиома 1 (А1)
Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Пояснение к аксиоме А1.
Рис. 2.
Рассмотрим три точки: А, В, С, причем точка С не принадлежит прямой АВ: (Рис. 2). Тогда через три точки А, В, С, не лежащие на одной прямой, проходит плоскость , и притом только одна.
Плоскость можно также обозначить через три точки АВС.
Вторая аксиома стереометрии
Аксиома 2 (А2)
Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
По-иному говорят, что прямая лежит в плоскости или что плоскость проходит через прямую.
Пояснение к аксиоме А2.
Рассмотрим плоскость , точки А, В прямой принадлежат плоскости (Рис. 3).
Рис. 3.
Аксиома утверждает – все точки прямой (прямой АВ) принадлежат плоскости , т.е. вся прямая лежит в плоскости или плоскость проходит через прямую . Смысл заключается в следующем: из того, что только две точки принадлежат плоскости, вытекает, что бесчисленное множество точек прямой лежат в этой плоскости.
Эту аксиому можно записать следующим образом:
Следствие: Может ли быть только три общие точки у прямой и плоскости? Нет, не может быть. Может быть две точки, и тогда вся прямая лежит в плоскости.
Если у прямой и плоскости одна общая точка М, то тогда говорят, что прямая и плоскость пересекаются в точке М (Рис. 4). Этот факт записывается следующим образом: .
Рис. 4.
Дата добавления: 2020-04-12; просмотров: 546;