Физический смысл тепла и температуры
Понятия тепло и температура относятся к числу фундаментальных научных понятий. Они широко используются в научных исследованиях, инженерной практике и обыденной жизни. Однако, физический смысл этих понятий оставался туманным до выявления модели фотона (рис. 15, 16) и роли закона Вина (245) в формировании максимумов излучений в полости чёрного тела (рис. 119) и максимумов излучения Вселенной (точки А, В и С на рис. 120). Происходит это потому, что элементарный носитель тепловой энергии – фотон (рис. 15, 16) существует в рамках Аксиомы Единства, а теоретики пытаются выявить его электромагнитную структуру и описать его поведение при формировании тепла и температуры с помощью теорий, работающих за рамками этой аксиомы.
В соответствии с теорией, работающей в рамках Аксиомы Единства, радиус вращения магнитной структуры фотона (рис. 38, 39), изменяясь в диапазоне , остаётся равным длине волны , которую описывает его центр масс. Сейчас мы увидим, что изменение температуры среды – следствие изменения длины волны большинства фотонов в этой среде (рис. 120) и станет ясно, что тепло и температуру формирует наибольшее количество фотонов (рис. 15, 16) с определенной длиной волны (рис. 119).
На рис. 119, b представлена зависимость интенсивности излучения абсолютно черного тела от длины волны излучения при разных температурах. Известно, что зависимость изменения максимума излучения черного тела от температуры и длины волны описывается законом Вина (245). Мы уже показали, что этот закон позволяет определить длину волны излучения (фотона), соответствующую максимуму излучения при любой температуре не только в полости абсолютно черного тела, но в полости всей Вселенной (рис. 120). А теперь посмотрим, как он описывает процесс формирования температуры в любых двух точках пространства.
Допустим, термометр показывает . Длина волны максимального количества (плотности в единице объёма пространства вблизи термометра) фотонов, формирующих эту температуру, будет равна
. (254)
Длина волны фотонов, совокупность которых формирует температуру , будет равна
. (255)
Энергии фотонов, формирующих температуры и будут соответственно равны:
; (256)
. (257)
Тогда разность энергий фотонов, при которой изменяется температура на , окажется такой
. (258)
Если термометр показывает , то максимальное количество фотонов в зоне термометра, формирующих эту температуру, имеет длину волны
. (259)
При повышении температуры до максимальное количество фотонов в единице объёма в зоне термометра, формирующих эту температуру, имеет длину волны
. (260)
Когда термометр показывает , то максимальное количество фотонов в зоне термометра, формирующих эту температуру, имеет длину волны
. (261)
Длина волны фотонов, формирующих температуру , равна
. (262)
Поскольку это длины волн невидимых инфракрасных фотонов, то создаётся ощущение ошибочности результата, так как тела с такой температурой излучают световые фотоны. Однако, надо учитывать, что формула Вина даёт длину волны максимальной плотности фотонов, формирующих такую температуру. Это значит, что присутствие световых фотонов не исключается, что мы и наблюдаем в действительности, но температуру, равную , формирует максимальная совокупность инфракрасных фотонов с длиной волны .
Когда температура в полости черного тела повышается до 1500 С, то длина волны фотонов, формирующих максимальную их плотность в полости черного тела, уменьшается (рис. 119)
. (263)
При температуре в полости черного тела, равной (рис. 119, а), имеем
. (264)
Таким образом, температуру среды в интервале формируют фотоны инфракрасного диапазона (табл. 40). С увеличением температуры длина волны фотонов, формирующих её, уменьшается.
Таблица 40. Длины волн и энергии фотонов, формирующих
определённую температуру
Радиусы фотонов | Энергии фотона, eV | Температура, / град. К |
0,973 | 2000/2273,16 | |
0,545 | 1000/1273,16 | |
0,160 | 100/373,16 | |
0,121 | 10/283,16 | |
0,117 | 1/274,16 | |
0,117 | 0,0/273,16 | |
0,116 | -1/272,16 | |
0,113 | -10/263,16 | |
-30/243,16 | ||
0,074 | -100/173,16 | |
0,031 | -200/73,16 | |
0,001 | -270/3,16 | |
0,0005 | -272/1,16 | |
0,00007 | -273/0,16 | |
0,00004 | -273,06/0,10 | |
0,000024 | -273,10 /0,050 |
Это - невидимые фотоны инфракрасного диапазона и у нас сразу возникает возражение. Попутно отметим, что длины волн (радиусы) фотонов изменяются в интервале 16 порядков (рис. 15, 16). Самые большие радиусы ( ) имеют фотоны реликтового диапазона (табл. 40), формирующие минимально возможную температуру вблизи абсолютного нуля, а самые маленькие ( ) - гамма фотоны (табл. 40) вообще не формируют никакую температуру. Формированием структуры фотонов и их поведением управляют 7 констант. Представленная информация убеждает нас в справедливости формулы Вина (245) и мы можем составить таблицу радиусов и энергий фотонов, формирующих определённые температуры.
Как видно (263 и 264), с уменьшением температуры радиусы фотонов, совокупность которых формирует температуру, увеличиваются. Это значит, что температуру вблизи абсолютного нуля формируют фотоны, имеющие самые большие радиусы, и мы сейчас убедимся в этом.
Итак, температура, которую показывает термометр, формируется максимальной плотностью фотонов, длина волны которых определяется по формуле (245) Вина.
А теперь обратим внимание на то, как формирование температуры связано с энергетическими переходами электронов в атомах. Например, при переходе электрона атома водорода с 4-го на 3-й энергетический уровень излучается фотон с энергией
(265)
и длиной волны
. (266)
Если бы фотоны с длиной волны формировали температуру, то она была бы равна
. (267)
При переходе электрона с 3-го на 2-й энергетический уровень излучается фотон с энергией
(268)
и длиной волны
(269)
Это уже световой фотон (табл. 40). Если максимальное количество фотонов в среде будет с длиной волны , то они сформируют температуру
. (270)
Таким образом, разность длин волн фотонов, рождаемых электроном атома водорода при переходе с 4-го на 3-й и с 3-го на 2-й энергетические уровни, равна
. (271)
Разность температур, формируемых этими фотонами, равна
. (272)
Из этого следует, что атомы водорода, да и атомы других химических элементов, не могут формировать плавное изменение температуры среды. Эту функцию могут выполнить только молекулы. Чтобы понять, как они это делают, обратим внимание на плавное изменение яркости зоны слева осциллограммы атома водорода (рис. 86). Плавное изменение яркости формируется плавно меняющимися длинами волн фотонов, излучаемых при синтезе молекул водорода.
Молекулы других химических элементов формируют густо расположенные спектральные линии, так называемые полосатые спектры (рис. 121). Это свидетельствует о дискретных энергетических переходах валентных электронов таких молекул.
Рис. 121. Молекулярный спектр поглощения неизвестной
молекулы (Интернет)
Таким образом, плавное изменение температуры среды обеспечивают молекулы, но не атомы химических элементов.
Известно, что энергия синтеза одного моля молекул водорода равна 436 кДж, а одной молекулы – 4,53eV. Энергию эту выделяют электроны атомов в виде фотонов. Каждый электрон излучает фотон с энергией 4,53/2=2,26eV.
Так как электроны излучают фотоны, то при формировании молекулы водорода каждый электрон должен излучить один фотон с энергией 2,26eV. Возникает вопрос: на каких энергетических уровнях должны находиться электроны в атомах водорода перед тем, как начнут объединяться в молекулы?
Молекулярный спектр водорода в виде сплошной светлой зоны (рис. 85, зона А-В) свидетельствует о том, что электроны в составе молекулы не занимают дискретные энергетические уровни, как они это делают, когда находятся в составе атомов. В молекулах их энергии связи с протонами и друг с другом изменяются так, что их величины оказываются равными межуровневым величинам энергий связи, соответствующих атомарному состоянию.
Когда электрон находится на третьем энергетическом уровне в атоме водорода, то его энергия связи с протоном равна 1,51eV, а когда на втором, то – 3,40eV. Чтобы излучить фотоны с энергиями 2,26eV при формировании молекулы и оказаться между вторым (с энергией связи 3,40eV) и третьим (с энергией связи 1,51eV) энергетическими уровнями, электрон должен перейти с 4-го на (примерно) 2-й энергетический уровень. В этом случае он излучит фотон с энергией.
. (273)
Однако, средняя величина энергий всей совокупности излученных фотонов становится равной 2,26 eV и электрон оказывается между вторым и третьим энергетическими уровнями, соответствующими атомарному состоянию.
Конечно, если бы все электроны атомов водорода при формировании молекул излучали фотоны с одной и той же энергией, то в молекулярном спектре появилась бы одна спектральная линия между атомарными линиями, соответствующими второму и третьему энергетическим уровням. Отсутствие этой линии и наличие светлой зоны (рис. 104 слева) указывает на то, что электроны атомов водорода, переходя с разных энергетических уровней при формировании молекул водорода, излучают фотоны с разными энергиями так, что их средняя величина оказывается равной 2,26eV. Это, видимо, естественно, так как процесс этот идет не при одной какой-то температуре, а в интервале температур.
Однако, следует отметить ещё раз, что некоторые молекулы формируют так называемые полосатые спектры, у которых вместо сплошной светлой зоны (рис. 85) – густо расположенные спектральные линии (рис. 121).
Теперь мы можем описать процесс изменения температуры. Представим, что перед нами ртутный или спиртовой термометры. Они показывают температуру . Это значит, что максимальное количество фотонов в среде, где расположены термометры, имеет длину волны (259). Молекулы ртути и спирта, также как и молекулы всех тел, жидкостей и газов в зоне термометров поглощают и излучают эти фотоны.
Если термометры будут показывать , то это будет означать, что в среде, где они расположены, максимальное количество фотонов имеет другую длину волны, а именно
. (274)
Теперь в среде, где расположены термометры, больше фотонов с меньшей длиной волны. Электроны молекул ртути и спирта начинают поглощать и излучать фотоны с длиной волны . Если количество этих фотонов в среде, где расположены термометры, будет постоянно, то температура среды не изменится. Если же количество этих фотонов уменьшится, а количество фотонов с меньшей длиной волны увеличится, то термометры начнут показывать большую температуру.
Допустим, что температура увеличилась до и стабилизировалась. Это значит, что в среде, где расположены термометры, максимальное количество фотонов имеет длину волны (260). Если температура повысится до , то это будет означать, что максимальное количество фотонов, где расположены термометры, имеет длину волны (261).
Вполне естественно, что молекулы всех тел, жидкостей и газов, расположенных в зоне термометров и имеющих аналогичную температуру, будут вести себя, как и молекулы ртути и спирта в термометрах. Они будут поглощать и излучать фотоны, которых больше в среде, где они расположены.
Из изложенного вытекают очень важные следствия, связанные с массой горячих и холодных молекул. Поскольку фотон обладает массой, то электрон, находясь в молекуле и излучая фотоны при охлаждении молекулы, уменьшает свою массу, а значит и массу молекулы. Таким образом, холодные молекулы имеют массу меньше, чем горячие. Этот факт должен проявляться в Природе, и он проявляется под действием законов механики.
Горячие молекулы газов атмосферы, имея большую массу, опускаются под действием силы тяжести к поверхности Земли, а холодные, имея меньшую массу (но не объёмную плотность), оказываются в верхних слоях атмосферы.
Далее, если смесь горячих и холодных молекул воздуха вращается в трубе, то под действием центробежной силы инерции более тяжелые горячие молекулы оказываются вблизи внутренней поверхности трубы, а холодные молекулы, с меньшей массой, располагаются ближе к оси трубы. Этот эффект четко проявляется в вихревых трубах и широко используется в промышленности.
Таким образом, температура среды и тел изменяется благодаря тому, что их молекулы излучают и поглощают фотоны среды непрерывно. Постоянство температуры обеспечивается большинством фотонов, соответствующих этой температуре в среде, где она измеряется. Изменение длины волны этого большинства изменяет температуру среды. Длина волны большинства фотонов определяется по формуле (245) Вина.
Чтобы получить формулу для определения температуры любого космического тела, запишем формулу Вина для двух разных температур:
, (275)
. (276)
Далее имеем:
, (277)
или
(278)
и
. (279)
Приравнивая (278) и (279), найдем
(280)
или
. (281)
Таким образом, произведение длин волн фотонов на температуры , которые они формируют, - величина постоянная и равная Это - седьмая константа, управляющая поведением фотонов. Назовём её константой равновесия температур.
Формула (280) означает, что если температуру формируют фотоны с длиной волны , то чтобы получить температуру , необходимо сформировать среду с большинством таких фотонов , при которых .
Например, возьмём температуру болометра телескопа Хаббла, выведенного в космос. Она равна . Её формирует совокупность фотонов с длинами волн . Предположим, что указанный телескоп зафиксировал, что максимум излучения с определённой звезды имеет длину волны, равную . Закон (280) формирования температур даёт нам такую величину температуры на поверхности исследуемой звезды
. (282)
Итак, температура на поверхности исследуемой звезды 29399,61К. Это значительно больше, чем на поверхности нашего Солнца и мы уверенно можем полагать, что исследуемая звезда моложе Солнца.
Теперь предположим, что телескоп Хаббла зафиксировал максимум излучения с космического объекта (астероида, например) с длиной волны . Учитывая, что , температура на поверхности этого космического объекта будет равна
. (283)
Описанный метод измерения температуры космических тел широко используется астрофизиками. Теперь они глубже будут понимать физическую суть этого процесса.
Мы уже показали, что максимальная длина волны фотона равна . Совокупность фотонов с такой длиной волны формирует минимальную температуру
. (284)
Встаёт вопрос о длине волны фотонов, совокупность которых формирует максимальную температуру. Современная наука не имеет точного ответа на этот вопрос. Мы можем только предполагать, что температуру формируют лишь те фотоны, которые излучаются электронами при синтезе атомов и молекул. Граница минимальной длины волны таких фотонов ещё не установлена. Можно предполагать, что она находится в диапазонах ультрафиолетового или рентгеновского излучений. Поскольку гамма фотоны и рентгеновские фотоны с минимальной длиной волны излучаются не электронами, а протонами при синтезе ядер атомов, то у нас есть основания полагать, что совокупность гамма фотонов и рентгеновских фотонов с минимальной длиной волны не участвует в формировании температуры окружающей среды.
Если бы гамма фотоны участвовали в формировании температуры окружающей среды, то максимально возможная температура была бы равна
. (285)
Если в Природе существует такая температура, то она разрушает не только молекулы и атомы, но и ядра атомов.
Температурное равновесие Вселенной управляется законом равновесия температур (280). Он гласит: произведение температур и длин волн или радиусов фотонов, формирующих температуру в любых двух точках пространства, – величина постоянная и равная Вот его математическая модель
. (286)
А теперь посмотрим как в этой модели реализуется Второе начало термодинамики макромира. Согласно этому началу тепло не может перетекать самопроизвольно от холодного тела к нагретому. Поскольку тепло и температуру формирует наибольшая совокупность фотонов (рис. 11), имеющих одинаковые радиусы (рис. 15 и 16), то выравнивание температур в двух точках пространства ( ) означает, что равные температуры формируют фотоны с равными радиусами ( ). Из этого следует такая запись математической модели закона формирования температур в этих точках
. (287)
Физически это означает, что одинаковую температуру в двух точках пространства формирует максимальная совокупность фотонов с равными радиусами, Это полностью согласуется со Вторым началом термодинамики макромира, исключающим повышение тепла в точке пространства за счёт теплых фотонов, самопроизвольно переходящих из другой точки с меньшей температурой. Например, если в точке 1 (рис. 120) температура выше, чем в точке 2, то температура в точке 1 не может повыситься за счёт перетекания из точки 2 теплых фотонов, которые, конечно, имеются в её зоне (рис. 180), но их там меньшинство и они не формируют температуру в этой точке. Поскольку существует процесс рассеивания фотонов, то это формирует автоматическое стремление системы к минимуму температур, поэтому из точки 2, в точку 1 могут перейти только те фотоны, которых в её зоне большинство. Поскольку в точке 2 температура ниже, чем в точке 1, то из точки 2 в точку 1 могут самопроизвольно перейти только те фотоны, которые формируют её температуру, а она ниже, чем в точке 1, поэтому приход фотонов из точки 2 в точку 1 приведёт только к снижению температуры в зоне точки 1.
Надо также иметь в виду, что согласно эффекту Комптона, родившийся фотон может только увеличивать свою длину волны или радиус и таким образом уменьшать свою энергию. Обратный процесс не зафиксирован экспериментально. Это значит, что «Второе начало термодинамики» соответствует реальности.
Таким образом, из начал Термодинамики микромира следуют ясные и точные физические смыслы понятий температура и тепло. Носителями тепла являются фотоны, а максимальная совокупность фотонов с одинаковыми параметрами в данной области пространства формирует температуру в этой области.
Температура плазмы
Плазма – особое состояние материи. Современные знания о плазме представляют собой, образно говоря, кашу. Попытаемся сформировать более чёткие представления о главном параметре плазмы – её температуре.
Начнём с определения плазмы в учебниках. Плазма – сильно ионизированный газ, в котором концентрация электронов приблизительно равна концентрации положительных ионов. Горячая плазма имеет температуру , а холодная . Далее, учебник просвещает нас о том, что все звёзды, звёздные атмосферы, галактические туманности и межзвёздная среда – тоже плазма.
Интересное дело, температура межзвездной среды около 3 град. Кельвина, что явно противоречит исходному определению понятий горячая и холодная плазма. Как быть? Давать новое определение понятию плазма? Попытаемся.
Плазма – электронно-ионное состояние вещества, непрерывно излучающего и поглощающего фотоны, соответствующие температуре этого вещества. Такое определение снимает температурное ограничение и облегчает формирование представлений о физической сути плазмы.
В соответствии с законом Вина (245), температуру в любой точке пространства формирует максимальная совокупность фотонов с определённой длиной волны или радиусом.
Радиусы фотонов (длины волн), совокупности которых формируют температуры и , представлены в формулах (254) и (255), а их энергии – в формулах (256) и (257).
Радиусы фотонов (длины волн), совокупности которых формируют температуры 100 и 1000 град. Цельсия, представлены в формулах (261) и (262).
Поскольку это радиусы (длины волн) невидимых инфракрасных фотонов, то создаётся впечатление ошибочности результата расчёта, так как тела с температурой излучают световые фотоны. Мы уже пояснили суть этой кажущейся ошибочности. Поясним ещё раз. Надо учитывать, что формула Вина даёт радиус (длину волны) максимальной плотности фотонов, формирующих такую температуру. Это значит, что присутствие световых фотонов не исключается, что мы и наблюдаем в действительности, но температуру, равную , формирует максимальная совокупность инфракрасных фотонов с радиусом (длиной волны) . Фотонов с другими радиусами меньше в зоне с такой температурой. Определим температуру, которую формирует максимальная совокупность световых фотонов с максимальным радиусом вращения (максимальной длиной волны) равным .
(288)
Не надо удивляться столь высокой температуре, формируемой световыми фотонами с параметрами вблизи инфракрасной области. Закон Вина указывает лишь на то, что в зоне с такой температурой максимальное количество фотонов будет иметь радиус (длину волны) . Конечно, в этой зоне будут не только световые фотоны всех радиусов, но и инфракрасные и ультрафиолетовые фотоны (рис. 15 и 16). Однако, максимальное количество фотонов будет с радиусом .
Мы уже показали, что минимальную температуру формируют фотоны с радиусами . Вполне естественно, что возникает вопрос: почему не существует фотонов с большим радиусом?
Если бы мы представляли фотон, как волну, то ответ на поставленный вопрос мы бы никогда не получили, так как волна не имеет параметра, который бы позволил нам понять причины локализации фотона в пространстве и причины существования предела этой локализации. А вот радиус фотона, является естественным геометрическим параметром, позволяющим составить представление о причине существования предела локализации фотона (рис. 15 и 16).
Так как фотон (рис. 15 и 16) имеет форму, близкую к кольцевой и так как он имеет массу в движении, то он может существовать в локализованном состоянии только при условии равенства между центробежной силой инерции и силой, сжимающей кольцо фотона. У нас остаётся одна возможность: признать, что силы, сжимающие фотон в процессе его движения со скоростью света и удерживающие его в локализованном состоянии, имеют магнитную природу. Вполне естественно, что величина этих сил зависит от массы фотона. Чем масса фотона больше, тем эти силы больше. Из закона локализации фотона
(289)
следует, что с увеличением длины его волны (радиуса) его масса уменьшается. Таким образом, должен существовать предел равенства центробежных сил инерции и магнитных сил, действующих на кольцевую (рис. 15 и 16) модель фотона. Он обусловлен уменьшением сил, локализующих фотон в пространстве (рис. 15 и 16). В результате, достигнув этого предела, совокупность напряжённостей магнитных полей, локализующих фотон в пространстве, оказывается недостаточной, и вся структура фотона разрушается, а остатки магнитных полей растворяются в субстанции, из которой они и состоят и которую мы называем эфиром.
Итак, закон Вина (245), описывающий процесс формирования температуры, великолепно работает в реликтовом, инфракрасном и световом диапазонах фотонных излучений (старое название – электромагнитные излучения). Согласно этому закону радиусы фотонов (длины волн), совокупность которых формирует температуру, обратно пропорциональны величине температуры. Чем больше температура, тем меньше радиусы фотонов, которые формируют её.
Мы - перед вполне естественным следующим вопросом: чему равна максимально возможная температура плазмы и совокупность каких фотонов формирует её? Мы уже отметили, что современная наука не имеет ещё точного ответа на этот вопрос, поэтому попытка найти его - дело не простое.
Известно, что спектр излучения Солнца близок к спектру излучения абсолютно черного тела (рис. 119) с температурой Т=6000 К. Эти данные позволяют нам вычислить радиусы фотонов, формирующих температуру на поверхности Солнца. Они равны
. (290)
Это фотоны середины светового диапазона. Средняя величина температуры на поверхности Солнца, равная 6000 К, свидетельствует о том, что её формируют не самые энергоёмкие световые фотоны, радиусы (длины волн) которых равны и у нас возникает желание знать температуру, которую сформируют эти фотоны. Она равна . Это не так много, но достаточно, чтобы плавился самый тугоплавкий металл вольфрам. Его температура плавления равна Т=3382 С, а кипения – Т=6000 С.
Конечно, если закон Вина работает в реликтовом, инфракрасном и световом диапазонах, то он должен работать в ультрафиолетовом, рентгеновском и гамма диапазонах. Попытаемся проверить это.
Известно, что ультрафиолетовое излучение Солнца начинается с длины волны . Какую температуру может формировать совокупность таких фотонов? Закон Вина даёт такой ответ Так мало!
Однако, астрофизики считают, что голубые звёзды имеют на поверхности температуру до 80000К. В соответствии с законом Вина, по которому они определяют эту температуру, её формирует совокупность фотонов с радиусами . Это фотоны, примерно, середины ультрафиолетового диапазона (табл. 2).
А Франк – Каменецкий утверждает, что в недрах Солнца сжатая плазма имеет температуру свыше . При этой температуре, как он полагает, идут термоядерные реакции. Вполне естественно, что температуру не могут формировать световые фотоны. Закон Вина позволяет нам определить радиусы (длины волн) фотонов, формирующих такую температуру. Они равны . Это фотоны средней зоны рентгеновского диапазона (табл. 2). И тут мы сразу вспоминаем рентгеноскопию. Все мы её проходили и никакого тепла не ощущали.
Допустим, что нас облучали рентгеновскими фотонами, соответствующими началу рентгеновского диапазона и имеющими радиусы (длины волн) . В соответствии с законом Вина совокупность этих фотонов должна формировать температуру . Да, в рентгенкабинетах нас облучают фотонами, которые могут формировать температуру более миллиона градусов, а мы не ощущаем её. Почему?
Если предположить, что рентгеновские аппараты генерируют не максимальную совокупность этих фотонов, а всего лишь 5% от максимальной совокупности, то они, согласно закону Вина, формируют температуру, равную 50000 К. Однако, мы её не ощущаем, проходя рентгеновское обследование. Это значит, что рентгеновские фотоны не формируют температуру, отождествляемую нами с привычным для нас теплом.
Конечно, физики обязаны были давно изучить этот вопрос, но они не сделали этого. В результате, мы до сих пор не знаем границу на шкале фотонных излучений, где заканчиваются фотоны, формирующие тепло и температуру в привычном для нас понимании и начинаются фотоны, совокупность которых не генерирует тепло.
Спектр абсолютно чёрного тела (рис. 119, b) с одной стороны ограничен фотонами, формирующими температуру от абсолютного нуля, а с другой стороны фотонами ультрафиолетового диапазона. Следовательно, существует граница фотонов, формирующих такую температуру среды, которую мы отождествляем с теплом. Все фотоны, имеющие радиусы (длины волн) меньшие, чем на этой границе, не формируют тепло в принятом нами понимании. Как же найти эту границу?
Из спектроскопии известно, что электроны взаимодействуют с протонами ядер атомов линейно и энергии их связи, примерно, одинаковые. С учетом этого мы можем взять энергию ионизации атома водорода. Она равна E=13,6 eV. Радиусы фотонов, имеющих такую энергию, равны Это фотоны невидимого ультрафиолетового диапазона. Совокупность этих фотонов формирует температуру .
Итак, граница между фотонами, которые формируют привычную для нас температуру, находится между ультрафиолетовым и рентгеновским диапазонами (табл. 2). Как найти точные параметры фотонов, которые определяют эту границу?
На нашем пути преграда. Суть её в том, что при последовательном удалении электронов из атомов энергии связи остающихся электронов с протонами ядер оказываются пропорциональными энергии ионизации атома водорода, умноженной на квадрат количества электронов, удалённых из атома. Обусловлено это тем, что освободившийся протон ядра начинает взаимодействовать с соседним электроном и таким образом увеличивает его энергию связи с ядром, которая оказывается равной энергии фотонов, излученных при этом. Возникает вопрос: с каким количеством протонов может взаимодействовать один электрон, уменьшая свою массу и не теряя устойчивость?
Нам известно, что наиболее энергоёмкие фотоны излучаются электронами водородободобных атомов. Это такие атомы, у которых остаётся один электрон на все протоны ядра. Электрон водородоподобного атома гелия имеет энергию ионизации, равную 54,41 eV. Фотоны с такой энергией находятся в ультрафиолетовом диапазоне. Они имеют радиусы . Это фотоны середины ультрафиолетового диапазона (табл. 2). Совокупность таких фотонов формирует температуру . Это уже не мало. Физический смысл этой температуры означает, что она соответствует началу формирования атома гелия и астрофизики подтверждают это.
Итак, перед нами проблема определения максимально возможной температуры и мы пока не знаем, как её решить. Есть ещё одно направление поиска. Если фотоны излучает электрон, то у него должен существовать предел потери массы, после которого он теряет устойчивость.
Возьмём для примера сотый химический элемент – Фермий. Если атом фермия станет водородоподобным, с одним электроном, то этот электрон, устанавливая связь со всеми 100 протонами ядра излучит фотон с энергией, равной произведению энергии ионизации атома водорода на квадрат номера химического элемента. E=13,6x100x100=136000eV. Радиус этого фотона будет равен
Это фотон рентгеновского диапазона, который, как мы уже установили, не генерирует тепло в принятом у нас понимании.
Вполне естественно, что описанное событие не может произойти, так как существует предел уменьшения массы электрона, после которого он должен терять устойчивость и растворятся в эфире.
Итак, максимально возможную температуру, которую мы отождествляем с теплом, формируют фотоны ультрафиолетового или начала рентгеновского диапазона, но точные параметры этих фотонов мы ещё не знаем.
Дата добавления: 2016-06-22; просмотров: 2399;