Тяговые свойства асинхронного тягового двигателя.


В асинхронном тяговом двигателе (АТД) используется взаимодействие вращающегося магнитного поля статора с током, наведенным этим полем в обмотке ротора. Вращающий момент асинхронного ТД описывается следующей формулой:

,

где С – постоянная, зависящая от параметров двигателя;

U1 – питающее напряжение;

s – абсолютное скольжение ротора (разность частоты питающего напряжения и частоты вращения ротора);

f1 – частота питающего напряжения.

Для питания АТД на ЭПС постоянного тока необходимо иметь автономный инвертор напряжения или тока. На ЭПС переменного тока кроме автономного инвертора необходим выпрямитель. И выпрямитель и инвертор могут быть объединены в одном полупроводниковом устройстве – преобразователе числа фаз (ПЧФ). На современном этапе развития силовой полупроводниковой техники выгоднее на ЭПС постоянного тока дополнительно иметь входной импульсный преобразователь для регулирования величины напряжения, подводимого к ТД.

Т.к. нагрузка ТД в эксплуатации может изменяться в широких пределах, то имея сложную многофункциональную систему управления важно и должно соблюдать условия, при которых ТД работает в наиболее экономичном режиме:

DРmin = (DРм + DРс + DР2) = const.

В первом приближении считают, что механические DРм и магнитные DРс потери в двигателе не зависят от нагрузки, т.е. от тока ротора. Потери в роторе

DР2 = М×(w1 – wвр),

где w1 – угловая частота вращения магнитного поля статора;

wвр – угловая частота вращения ротора.

Рассмотрим, при каком условии потери минимальны. Так как мы условились, что потери механические и магнитные не зависят от нагрузки, то условие минимума потерь сводится к минимуму потерь в роторе:

,

где р – число пар полюсов обмотки статора;

fвр – частота вращения ротора;

f2 – частота тока обмотки ротора.

Следовательно, условие

DРmin = const

преобразуется в условие

f2 min = (f1fвр)min = const.

Для выявления способов реализации этого условия рассмотрим два произвольных режима работы двигателя. Допустим, что в первом режиме статор питается напряжением U1 с частотой f1, а в другом – соответственно U1' и f1'. Относительное скольжение ротора в этих режимах равно:

.

Вращающий момент в этих режимах будет соответственно равен:

.

Найдем соотношение моментов в этих режимах при условии

f1fвр = f1' – fвр' = const:

.

Отсюда

.

Этот закон оптимального частотного управления асинхронным двигателем был сформулирован М.П.Костенко в 1925 г. Из этого выражения следует, что оптимальный режим работы асинхронного двигателя определяется соотношением трех его параметров – напряжения и частоты питающего напряжения, а так же вращающего момента. Изменяя соотношение этих составляющих таким образом, чтобы соблюдалось условие минимума потерь т.е. условие работы с максимальным КПД и cosj. При больших нагрузках следует учитывать падение напряжения в обмотке ротора и для получения наилучших показателей вносить коррективы в закон регулирования. С этой целью на ЭПС применяется система автоматического регулирования режимов работы АТД.

Поскольку для электрической тяги удобнее иметь выражение закона регулирования не от частоты питающего напряжения и момента, а от скорости и силы тяги, то выражение закона Костенко преобразуется следующим образом:

.

Выражение получено с допущением, что на рабочей части характеристики скорость движения пропорциональна частоте питающего напряжения без учета скольжения:

,

а сила тяги, как известно, пропорциональна вращающему моменту без всяких допущений:

.

Для ЭПС наиболее характерен следующий закон регулирования: до скорости выхода на номинальную характеристику поддерживается постоянство силы тяги, а затем – постоянство мощности.

Постоянство силы тяги означает постоянство вращающего момента. Вращающий момент определяется взаимодействием магнитного потока статора и тока ротора, приведенного к обмотке статора (I2'). Следовательно, постоянство вращающего момента равносильно I2' = const. Ток статора можно представить как сумму векторов тока намагничивания и тока ротора, приведенного к обмотке статора:

.

Следовательно, постоянство тока ротора равносильно постоянству тока статора и закон регулирования при постоянстве силы тяги будет выглядеть следующим образом:

.

Т.е. для поддержания постоянной силы тяги необходимо с ростом скорости повышать напряжение питания, пропорционально скорости или частоте питающего напряжения.

После выхода на номинальную характеристику целесообразно поддерживать постоянной мощность двигателя. Поскольку

,

то

.

Следовательно

.

Иными словами, для поддержания постоянства мощности необходимо с ростом скорости изменять питающее напряжение пропорционально корню квадратному из его частоты. Рост питающего напряжения требует более мощной изоляции обмотки статора, и, следовательно, приведет к увеличению габаритных размеров ТЭД.

В случае реализации закона постоянства питающего напряжения мощность и ток статора будет изменяться обратно пропорционально скорости движения, а сила тяги – обратно пропорционально квадрату скорости:

; Þ .

; Þ .

Так как в этом случае сила тяги падает слишком интенсивно, рационально реализовать гибридный закон регулирования: при достижении максимальной мощности напряжение питания еще не достигает своего максимального значения. Реализуется режим постоянства мощности. При достижении напряжением питания максимума – режим постоянства питающего напряжения.

Логично предположить, что система автоматического управления способна реализовать алгоритм поддержания постоянной скорости движения. Как следует из формулы, постоянство скорости соответствует постоянству частоты питающего напряжения. В этом случае

,

т.е. при постоянной скорости движения необходимо изменять питающее напряжение пропорционально корню квадратному из силы тяги.

Таким образом, одним из достоинств асинхронного ТД является возможность с помощью системы управления реализовывать различную жесткость характеристик: при постоянстве частоты реализуется жесткая характеристика (хороша при необходимости использовать максимальную силу по условиям сцепления), при постоянстве напряжения – мягкую.

Максимальную частоту питающего напряжения выбирают исходя из максимальной скорости движения ЭПС и параметров ТД и тяговой передачи:

.

Минимальную частоту выбирают из условия трогания с места при условии, что ТД реализует силу тяги, превышающую номинальную на 30…50% при минимальном токе статора.

 



Дата добавления: 2020-03-21; просмотров: 637;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.