НУКЛЕІНОВІ КИСЛОТИ:БУДОВА, БІОЛОГІЧНА РОЛЬ. БІОСИНТЕЗ БІЛКА
Нуклеїнові кислоти були відкриті в 1868 році швейцарським хіміком Ф. Мішером. Учений виділив ці речовини з ядер кліток і назвав їх нуклеїном (від лат. nucleus – ядро). Однак більш докладне вивчення цих сполук було проведе-но лише наприкінці 40-х років нашого сторіччя. Великий внесок у розшиф-ровку складу і ролі нуклеїнових кислот внесли хіміки П. Левін, Е. Чаргафф, Дж. Уотсон, Ф. Лемент, Б.В. Кедровський, А.М. Бєлозерський, А.С. Спірін і інші.
Нуклеїнові кислоти – це клас полімерів, відповідальних за збереження і передачу генетичної інформації, а також її реалізацію в процесах синтезу клітинних білків. Вони універсальні компоненти всіх живих організмів. Нуклеїнові кислоти являють собою речовини білого кольору, у вільному стані погано розчинні у воді.
Ці сполуки мають високу молекулярну масу (мільйони Да), містять близько 15 % Нітрогену і 10 % фосфору, відрізняються різко вираженими кислотними властивостями (за рахунок фосфорної кислоти) і при фізіологічному значенні рН несуть високий негативний заряд, унаслідок чого рухливі в електричному полі.
Хімічний склад і будова. Молекула нуклеїнової кислоти являє собою полінуклеотид, що складається з великого числа мононуклеотидів. Мононуклеотиди можуть по-різному розташовуватися в молекулі полінуклеотида, що обумовлює різноманіття нуклеїнових кислот у природі.
Кожен мононуклеотид складається з азотистої основи (пуринової або піримідинової), вуглеводу – пентози (рібози або дезоксирібози) і фосфорної кислоти. Мононуклеотиди позначають за назвою азотистої основи, що входить до їхнього складу: цитидинмонофосфат (ЦМФ) або цитидинмонофосфорна кислота; урідинмонофосфат (УМФ) або урідинмонофосфорна кислота; аденозінмонофосфат (АМФ) або аденозінмонофосфорна кислота; гуанозінмонофосфат (ГМФ) або гуанозінмонофосфорна кислота.
Найбільше значення з азотистих основ мають дві пуринових основи (похідні пурину) – аденін (6-амінопурин) і гуанін (2-аміно-6-гідроксипурин) і три піримідинових (похідні піримідину) – тимін (5-метилурацил), цитозин (2-гідрокси-6-амінопіиримідин) і урацил (2,6-гідроксипіримідин), що у складі нуклеїнових кислот представлені в кетоформі. До складу нуклеїнових кислот входять вуглеводи: рибоза, дезоксірибоза.
Пуринові або піримідинові основи, рибоза і дезоксирибоза і фосфорна кислота зв'язані в молекулах нуклеотидів однаково. Пентози приєднуються до нітрогену основ через глікозидні зв'язки у пуринових основ у дев'ятому положенні, у піримідинових – у третьому.
При гідролізі мононуклеотидів утворюється два види продуктів: сполуки азотистої основи з пентозою і вільна фосфорна кислота або азотиста основа і пентозофосфорний ефір. При цьому вуглевод знаходиться посередині молекули мононуклеотиду, будучи сполучною ланкою між азотистою основою і фосфорною кислотою.
Сполуки азотистої основи (наприклад, аденіну) з пентозою називають нуклеозидом. Нуклеозиди являють собою двокомпонентні речовини, приєднуючи фосфорну кислоту вони перетворюються в мононуклеотиди – трикомпонентні сполуки. Фосфорна кислота приєднується до нуклеозидів за рахунок складноефірних зв'язків зі спиртовим гідроксилом пентози.
За складом вхідних у нуклеїнові кислоти вуглеводів розрізняють дезоксирибонуклеїнову (ДНК) і рибонуклеїнову (РНК) кислоти.
Дезоксирибонуклеїнова кислота. ДНК локалізується, в основному, в ядрах кліток (у хромосомах) і лише незначна кількість її виявлена в мітохондріях і хлоропластах. Молекулярна маса складає (0,5–20) × 106 Да й вище. Основна функція ДНК полягає в тому, що вона є носієм-хронителем генетичної інформації. У ній закодовані всі спадкоємні властивості організму, у першу чергу всі структури білків і, отже, особливості обміну речовин. Це обумовлено визначеною послідовністю розташування азотистих основ у структурі ДНК.
До складу ДНК входять азотисті основи: аденін (А), гуанін (Г), тимін (Т) і цитозин (Ц), вуглевод – дезоксирибоза і фосфорна кислота. Первинна структура молекули являє собою унікальну послідовність з'єднаних між собою мононуклеотидів за типом 3,5-зв'язку. У нуклеотидах виявлені фосфодиефирні зв'язки, що утворюються між ОН-групою в положенні 5' дезоксирибози одного нуклеотида і ОН-групою в положенні 3' пентози іншого (рис. 6).
Рис. 6. Фрагмент первинної структури ДНК
При цьому азотисті основи певним чином з'єднуються між собою за принципом компліментарності (доповнення): пуринові основи доповнюють піримідинові. Наприклад, аденін завжди з'єднується тільки з тиміном, а гуанін – з цитозином.
Молекулярний вміст у ДНК пуринів дорівнює вмістові піримідинів, тобто вміст аденіну дорівнює вмістові тиміну (А = Т або А/Т =1), вміст гуаніну дорівнює вмістові цитозину (Г = Ц або Г/Ц = 1), сумарний вміст аденіну і гуаніну дорівнює сумарному вмістові цитозину і тиміну (А + Г) = (Ц + Т) або (А + Г): (Ц + Т) = 1.
Крім того встановлено, що кількість аміногруп, що входять до складу ДНК пуринових основ (аденіну і гуаніну), дорівнює кількості аміногруп (6), що входять до складу піримідинових основ (цитозину і тиміну) (рис. 7).
Рис. 7. Компліментарність основ у ДНК
Між аденіном і тиміном утворюються два гідрогенні зв'язки, а між гуаніном і цитозином – три.
Усі ці дані дозволили американським хімікам Дж. Уотсону і Ф. Лементу створити модель вторинної структури ДНК, що являє собою двотяжну антипаралельну спіраль. Схематично це можна показати у виді кручених сходів (рис.8).
Рис. 8. Схематичне зображення подвійної спіралі ДНК
Крім первинної і вторинної структур, розрізняють також і третинну структуру нуклеїнових кислот, зв'язану з просторовим розташуванням ДНК.
Рибонуклеїнова кислота. Будова РНК за характером зв'язків між окремими нуклеотидами ланцюга така ж, як і в молекулі ДНК. Залишок пентози одного нуклеотиду в РНК з'єднується складноефірним зв'язком із залишком фосфорної кислоти іншого мононуклеотиду.
Основні характеристики нуклеїнових кислот представлені в таблиці 2.
Таблиця 2.
Дата добавления: 2020-03-17; просмотров: 651;