Последовательная схема


Задано дифференциальное уравнение, описывающее состояние системы:

.

Тогда передаточная функция для такой системы будет иметь вид:

.

Приведем передаточную функцию системы к виду последовательно соединенных звеньев первого порядка, т.е.

.

Структурная схема для такого вида передаточной функции имеет вид:

 

Составим систему уравнений по приведенной структурной схеме относительно выходных сигналов звеньев системы:

Учитывая, что p – это оператор дифференцирования, т.е. , запишем

Тогда, принимая во внимание, что типовая форма записи метода пространства состояний имеет вид:

запишем матрицы A,B и C:

На основании полученных уравнений получим структурную схему для физической системы.

Структурная схема физической системы это структурная схема специфической конфигурации, состоящая из интеграторов, коэффициентов усиления и сумматоров. Данная структурная схема представляет собой заготовку для исследования системы с использованием компьютера.

Параллельная схема

Передаточная функция системы имеет вид:

.

Приведем передаточную функцию системы к виду параллельно соединенных звеньев первого порядка, т.е.:

Тогда запишем следующее:

Структурная схема для такого вида передаточной функции имеет вид:

Составим систему уравнений по приведенной структурной схеме относительно выходных сигналов звеньев системы:

Учитывая, что p – это оператор дифференцирования, т.е. , запишем:

Запишем матрицы A,B и C:

На основании полученных уравнений получим структурную схему для физической системы.

Нормальная схема

Передаточная функция системы имеет вид:

Структурная схема для такого вида передаточной функции имеет вид:

Составим систему уравнений по приведенной структурной схеме относительно выходных сигналов звеньев системы:

Учитывая, что p – это оператор дифференцирования, т.е. , запишем:

Учитывая то, что при использовании метода пространства состояний матричная форма записи системы дифференциальных уравнений составляется относительно ДУ первого порядка, понизим уравнение второго порядка относительно сигнала , введя промежуточный сигнал так, что

Запишем матрицы A,B и C:

На основании полученных уравнений получим структурную схему для физической системы.

Таким образом, используя три основных схемы перехода можно перейти от формы представления системы в виде передаточной функции к форме пространства состояний.

Как уже было отмечено, существует и обратный путь перехода, т.е. от формы описания с помощью пространства состояния к операторной передаточной функции.

здесь - единичная матрица.

Тогда относительно выходного сигнала можно записать:

,

а выражение для передаточной функции имеет вид:

,

здесь - обратная матрица для матрицы *.

Таким образом, зная матрицы A, B и C, можно найти выражение для операторной передаточной функции.

 




Дата добавления: 2020-02-05; просмотров: 558;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.