Выбор электродвигателя переменного тока и влияние его механической характеристики на оценку эффективности привода


 

В машиностроении применяют асинхронные электродвига­тели трехфазного тока с короткозамкнутым ротором, которые непосред­ственно включаются в сеть. Их преимущества: простота конструкции, сравнительно низкая стоимость, простота обслуживания и надежность. Недостатки: меньшие КПД и cos относительно синхронных электро­двигателей; ограниченная возможность регулирования по сравнению с электродвигателями постоянного тока и асинхронными электро­двигателями с фазовым ротором, имеющих контакты для включения реостата в цепь ротора.

Синхронная частота вращения соответствует холостому ходу. Под нагрузкой частота вращения электродвигателя уменьшается.

Номинальному (паспортному) режиму эксплуатации электродвига­теля соответствует номинальная частота nНОМ и номинальная мощность РНОМ. В этом режиме электродвигатель работает длительное время без перегрева и КПД близок к максимальному. Момент, соответствующий PНОМ, является номинальным – ТНОМ.

В каталоге указывается также отношение ТМАХ НОМ, Т ПУСК/TНОМ. При пуске (n = 0) двигатель развивает момент TПУСК. В процессе разгона электродвигателя вращающий момент первоначально возрастает до TMAX (при nKP), а затем снижается до момента TНОМ (при nНОМ). Участок харак­теристики от Т = 0 (холостой ход) до TМАХ близок к прямолинейному, т.е. момент в указанных пределах пропорционален скольжению, однако благодаря «жесткости» механической характеристики значительное изменение нагрузки вызывает несущественное изменение частоты вращения.

В каталоге указывается номинальная частота вращения nНОМ, мин-1, принимаемая за расчетную, например, при определении общего пере­даточного отношения механизма. Если электродвигатель работает при установившемся режиме (nНОМ и TНОМ), а затем подвергается перегрузке, его частота вращения падает. При этом должно быть обеспечено даже для кратковременного момента перегрузки TПУСК TМАХ. Поэтому частота вращения, соответствующая TМАХ , является критической пКР. Следовательно, при выборе электродвигателя необходимо согласовать его характеристику с режимом нагрузки механизма. Например, для конвейеров указывается характер нагрузки и отношение ПУСК / ТНОМ) МАХ/TНОМ).

Если это условие не соблюдается для данного типа электродвигателя, необходимо выбрать другой тип или предусмотреть в системе привода устройство, позволяющее разгонять электродвигатель вхолостую, а затем плавно включать нагрузку, например, с помощью фрикционной управ­ляемой муфты.

Длительный режим работы характеризуется его продолжительностью, достаточной для того, чтобы температура нагрева двигателя достигала установившегося значения.

Большинство технологических машин, следовательно, и их приводы работают в условиях переменных режимов нагружения, которые опре­деляются циклограммой, т.е. графиком изменения вращающего момента во времени.

Исследованием установлено, что при всем многообразии циклограмм моментов их можно приближенно свести к шести стандартным типовым режимам нагружения.

0постоянный режим нагружения, характерен для машин, которые работают с отклонениями от номинального режима до 20%. Он является наиболее тяжелым.

1-й — тяжёлый режим нагружения, характерен для машин, которые работают большую часть времени с нагрузками, близкими к номинальным, например, для горных машин.

11 — средний равновероятный режим нагружения, характерен для машин, которые работают одинаковое время со всеми значениями нагрузки, например, для транспортных машин.

111 — средний нормальный режим нагружения, характерен для машин, которые работают большую часть времени со средними нагрузками, например, для достаточно интенсивно эксплуатируемых машин.

1V — лёгкий режим нагружения, характерен для машин, которые работают большую часть времени с нагрузками ниже средних, например, для широко универсальных станков.

V — особо лёгкий режим нагружения, характерен для машин, которые большую часть времени работают с малыми нагрузками, например, для металлорежущих станков.

Сведения о режимах наружения используют при проектировании зубчатых передач на выносливость (глава 4) согласно табл. 1.4.

 

Таблица 1.4

Коэффициенты для вычисления эквивалентного числа циклов

Номер режима KHE KFE
0,500 0,250 0,180 0,125 0,063 0,300/0,200 0,143/0,100 0,065/0,036 0,038/0,016 0,013/0,004

Числитель для зубчатых колес с однородной структурой, включая ТВЧ со сквозной закалкой, и для шлифованной переходной поверхности независимо от твёрдости. Знаменатель для зубчатых колёс азотированных, цементированных и нитроцементированных с нешлифованной переходной поверхностью.

 

При выборе электродвигателя учитывают ряд требований, обусловлен­ных условиями и режимом работы привода: частотой вращения выход­ного вала, состоянием окружающей среды; типом передаточного меха­низма и т.д. Критериями оценки оптимальности выбора электродвигателей служат надежность и экономичность электромеханической системы, КПД, габариты и масса двигателя, его динамические характеристики.

В рамках учебного курсового проектирования эта задача решается ограниченно и заключается в подборе типоразмера по каталогу с учетом его механической характеристики.

Для определения мощности электродвигателя РЭД и частоты враще­ния его ротора nЭД в техническом задании должны быть указаны мощ­ность на выходе РВЫХ и частота вращения выходного (тихоходного) вала привода nВЫХ. В зависимости от сложности учебной задачи указывают синхронную частоту вращения вала электродвигателя nЭДС или проекти­ровщик (студент), исходя из кинематических возможностей привода, сам выбирает требуемую реальную частоту вращения ротора электродви­гателя nЭДР .

При проектировании привода требуемая мощность электродвигателя определяется по мощности на тихоходном (выходном) валу. Если значение момента и частоты вращения (T = const и п = const), то требуемая мощность PЭД определяется зависимостью:

PЭД = РBM / об, (1.19)

где об — общий КПД привода;

РВМ мощность на выходном валу.

Основные параметры асинхронных короткозамкнутых электродвигателей трехфазной серии А4 приведены в приложении (табл. П.1).

При выборе электродвигателя следует учитывать следующие положе­ния.

Чем ниже частота вращения вала электродвигателя, тем больше его размеры, масса и стоимость. Высокооборотные двигатели, напротив, имеют меньшие размеры, массу, стоимость, чем тихоходные той же мощности. Поэтому применение тихоходного двигателя с пс = 750 мин-1 возможно при достаточном обосновании.

Следует также учитывать, что допустимаяперегрузка не должна превышать 8% при постоянной и 12% при переменной нагрузке; допустимая недогрузка - 20%.

Пример. Выбрать электродвигатель к кормоприготовительной машине (рис. 1.3), выполнить кинематический расчет и определить моменты вращения на валах.

Исходные данные мощность на рабочем валу машины Р = 1,5 кВт, частота вращения рабочего вала пр = 30 мин-1, синхронная частота вращения вала электродвигателя nсэд = 3000 мин-1, режим нагружения — 5(легкий).

 

 

 
 

Рисунок 1.3 — Кинематическая схема привода:

1 — электродвигатель, 2 — муфта упругая; 3 — червячный редуктор; 4 — цепная передача; 5 — рабочий вал со спиральными лопастями; 6 — чан

 

Решение. 1 Определяем предварительное значение КПД привода.

об = 12 23 м n3 = 0,78×0,94×0,98×0,993 = 0,71.

Значения отдельных звеньев приняты по табл. 1.1; КПД червячной передачи (при двухзаходном червяке) 12 = 0,78; КПД цепной передачи 23 = 0,94; КПД муфты м = 0,98; КПД одной пары подшипников п = 0,99 (в нашем случае — три пары).

2 Определяем требуемую мощность на ведущем валу привода Р':

P=P / об = 1,5 / 0,71 = 2,1 кВт.

При заданном режиме нагрузки механизма принимаем по табл. П.1, исходя из заданной синхронной частоты вращения (nсэд = 3000 мин-1), электродвигатель серии A4 типа М80В2У3 с номинальной мощностью Pэд = 2,2 кВт, асинхронной частотой вращения вала nНОМ = 2850 мин-1; диаметр выступающего конца вала d1 = 22 мм (потребуется при подборе муфты).

3 Определяем общее передаточное число привода и разбиваем его по ступеням:

uоб = nном / np=2850/30 = 95

Так какuоб = и12 u23, редуктор должен иметь стандартное передаточное значение (ГОСТ 2144–76), а привод в целом — компактные размеры, принимаем (табл. 5.4) u12 = 28, тогда передаточное число цепной передачи:

u23 =uоб/u12 = 94/28 = 3,36.

4 Определяем частоты вращения (угловые скорости) валов привода:

n1 =nном = 2850 мин-1; 1 = n1 / 30 =3,14×2850/30 = 298,3 c-1;

n2 =n1 / и12 = 2850/20 =142,5 мин-1; = n2/30=3,14×100,7/30=10,54 c-1;

n3 =n2/и23=100,7/3,36 = 29,97 мин-1; = n3/30=3,14×29,97/30=3,14 c-1.

5 Определяем моменты вращения на валах

T1=P1/ 1= 2,1×103/ 298,3 = 7,04 Н∙м;

P2 = P1× м× 12× =2,1×0,98× 0,78×0,992 = 1,57 кВт;

T2 = Р2 / 2 =1,57×103/10,5 = 149,52 Н∙м;

Т3= Р3/ 3 =2,1×103/3,13 = 668,79 Н∙м.

 

Вопросы для самоконтроля

1 Раскройте содержание рис. 1.3.

2 Дайте определение понятию «привод».

3 Для каких функций существуют в машинах передачи?

4 Напишите формулы основных параметров простейшей механической передачи.

5 Какие электродвигатели наиболее распространены в приводах технологических машин, раскройте их основные характеристики.

6 Изложите порядок выбора электродвигателя при проектировании привода.



Дата добавления: 2020-02-05; просмотров: 637;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.015 сек.