Характеристики сенсорных модальностей


 

В этом разделе мы рассмотрим два свойства, общие для всех сенсорных модальностей. Первое из них относится к описанию сенсорных модальностей на психологическом уровне, а второе относится к биологическому уровню.

 

Чувствительность

 

Наиболее удивительной чертой наших сенсорных модальностей является их чрезвычайно высокая чувствительность при обнаружении наличия объекта или события или их изменения. Некоторые показатели чувствительности приведены в табл. 4.1. Здесь представлена оценка минимального стимула, который можно обнаружить в одной из пяти модальностей. Что самое примечательное в этих «минимумах», это насколько они незначительны, то есть насколько чувствительна соответствующая сенсорная модальность. Особенно это касается зрения. Классический эксперимент (Hecht, Shlaer & Pirenne, 1942) показал, что чувствительность человеческого зрения находится на пределе физической возможности. Наименьшая единица световой энергии — это квант. Гехт и его коллеги показали, что человек может обнаружить вспышку света всего в 100 квантов. Более того, как было показано ими, только 7 из этих 100 квантов в действительности вступают в контакт с теми молекулами глаза, которые отвечают за преобразование света в зрительное ощущение, и каждый из этих 7 квантов воздействует на отдельную молекулу. Следовательно, рецептивная единица глаза (молекула) чувствительна к минимально возможной единице световой энергии.

 

Таблица 4.1. Минимальные стимулы

Ощущения Минимальный стимул
Зрение Пламя свечи с расстояния в 30 миль в ясную темную ночь
Слух Тиканье часов с 20 футов при условии полной тишины
Вкус Одна чайная ложка сахара на два галлона воды
Обоняние Одна капля духов, развеянная по всему объему шести комнат
Осязание Крыло мухи, упавшее на щеку с высоты 1 см

Приблизительные минимальные стимулы для различных ощущений (по: Galanter, 1962).

 

Абсолютный порог. Предположим, вы наткнулись на неизвестное существо и хотите определить его чувствительность к свету. Что вы будете делать? По-видимому, самый прямой путь заключается в том, чтобы определить, какое минимальное количество света оно способно обнаружить. Это ключевая идея измерения чувствительности. То есть наиболее обычный способ оценить чувствительность той или иной сенсорной модальности — это определить минимальную интенсивность стимула, которая надежно отличается от полного отсутствия стимула; например, самый слабый свет, который можно уверенно отличить от темноты. Эта минимальная интенсивность называется абсолютным порогом.

<Рис. Наши сенсорные модальности крайне чувствительны при обнаружении присутствия объекта — даже слабого света свечи в далеком окне. Ясной ночью пламя свечи может быть заметным на расстоянии более 30 километров.>

Процедуры для определения абсолютного порога называются психофизическими методами. В одном из широко применяемых методов экспериментатор сначала отбирает набор стимулов, интенсивность которых близка к пороговой (например, набор лампочек с разной интенсивностью слабого свечения). Стимулы предъявляются испытуемому по одному в случайном порядке, а он должен сказать «да», если стимул обнаружен, и «нет» — если не обнаружен. Каждый стимул предъявляется по многу раз, и для стимула каждой величины определяется доля положительных ответов.

На рис. 4.1 показана зависимость доли ответов «да» от величины стимула (световой интенсивности, например). Эти данные типичны для такого рода экспериментов; с ростом интенсивности доля ответов «да» постепенно растет. Испытуемый иногда обнаруживает стимулы с интенсивностью всего 3 единицы, а иногда ему не удается обнаружить стимул с интенсивностью 8 единиц. Психологи согласились в том, что когда поведение характеризуется такого рода графиком, абсолютный порог определяется как интенсивность стимула, при которой последний обнаруживается в 50% случаев. Так, для данных, показанных на рис. 4.1, абсолютный порог составляет 6 единиц. (Величина абсолютного порога может значительно варьировать как у разных индивидов, так и у одного индивида в разное время, в зависимости от его мотивации и физического состояния.)

 

Рис. 4.1. Психометрическая функция, согласно эксперименту обнаружения.По вертикальной оси отложена доля случаев, когда испытуемый отвечает: «Да, я обнаружил стимул»; по горизонтальной оси — мера величины физического стимула. Такие графики называют психометрическими функциями, и их можно получить для любого параметра стимула.

 

Обнаружение изменений интенсивности. Мир постоянно меняется, и способность обнаруживать эти изменения, очевидно, ценна для выживания. Неудивительно, что психологи посвятили немало усилий изучению способности обнаруживать изменения интенсивности. Исследования, посвященные обнаружению изменений интенсивности, преследуют цель ответить на основной вопрос: насколько должны различаться два стимула, чтобы человек мог ощутить разницу между ними?

Стимул должен превысить некоторую минимальную величину, прежде чем можно будет что-либо обнаружить; точно так же между интенсивностями двух стимулов должно появиться определенное различие, чтобы можно было надежно отличить один от другого. Например, разница интенсивностей двух звуковых тонов должна достичь определенной величины, прежде чем один будет слышен громче другого; а чтобы они на слух различались по высоте, их частоты должны отличаться на определенную величину. Минимальное различие интенсивностей двух стимулов или их качество, необходимое для суждения о том, что эти стимулы разные, называется дифференциальным порогом, или едва заметным различием. Подобно абсолютному порогу, едва заметное различие определяется статистически. При использовании вышеописанной экспериментальной методики едва заметное различие определяется как количество изменения, необходимое, чтобы испытуемый обнаруживал разницу между двумя стимулами в 50% случаев.

Эксперимент по определению едва заметного различия — сокращенно ЕЗР — можно провести следующим образом. Вспыхивает пятно света (стандарт), а над ним на более короткое время вспыхивает другое пятно света (инкремент). [Пятно, отличающееся от стандартного по яркости в большую (инкремент) или меньшую (декремент) сторону — Прим. перев.] Стандартное пятно остается одним и тем же во всех пробах, а интенсивность инкрементного пятна меняется от пробы к пробе. Испытуемый отвечает «да» или «нет» соответственно тому, кажется ли ему инкрементное пятно более ярким, чем стандартное, или нет. Если испытуемый в половине попыток может отличить инкремент от стандарта, когда интенсивность инкремента 51 ватт, а стандарта — 50 ватт, то при этих условиях ЕЗР равно 1 ватт.

Эти эксперименты имеют древнюю историю. В 1834 году немецкий психолог Эрнст Вебер провел подобное исследование и обнаружил одну из наиболее фундаментальных закономерностей в психологии. Он открыл, что чем выше начальная интенсивность стимула, тем больше должно быть изменение стимула, чтобы испытуемый его заметил. Вебер замерил ЕЗР интенсивности для нескольких модальностей, включая зрение и слух. Он заметил, что ЕЗР повышается с ростом интенсивности стандарта, и предположил, что ЕЗР есть постоянная часть интенсивности стимула (закон Вебера). Если, например, ЕЗР равно 1 при интенсивности 50, оно будет равно 2 при интенсивности 100, 4 при 200 и так далее (в этом примере ЕЗР всегда будет составлять 0,02 от интенсивности стандарта).

Со времени первого исследования Вебера было проведено много подобных экспериментов. Результаты одного из них с применением световых стимулов представлены на рис. 4.2. Закон Вебера не очень точно соответствует данным, но является весьма неплохим приближением. В общем это верно.

 

Рис. 4.2. Результаты эксперимента по обнаружению различий.На вертикальной оси отложен процент случаев, когда испытуемый сообщал «Да, я обнаружил нечто, более чем стандарт (эталон)»; по горизонтальной оси измеряется интенсивность физических стимулов. Стандартный стимул в данном примере является центральным в диапазоне стимулов. Такие диаграммы могут быть построены для любых величин стимулов, к восприятию изменений которых восприимчив испытуемый.

 

Закон Вебера имеет и другое применение. Так, величины постоянных Вебера можно использовать для сопоставления чувствительности различных сенсорных модальностей. Чем меньше эта постоянная, тем больше чувствительность к изменениям интенсивности в этой модальности. В табл. 4.2 приведены постоянные Вебера для различных модальностей; из нее ясно, что к запаху мы более чувствительны, чем ко вкусу. Это означает, что когда вы добавляете приправу к готовящемуся блюду, разницу вы почувствуете сначала на запах, а уж потом на вкус.

 

Таблица 4.2

Параметр стимула Постоянная вебера
Частота звука 0,003
Интенсивность звука 0,15
Интенсивность света 0,01
Концентрация запаха 0,07
Концентрация вкуса 0,20
Сила давления 0,14

Едва заметные различия (ЕЗР) для различных сенсорных качеств (выражены в процентах изменений, необходимых для надежного восприятия различий)

 

Вскоре после того как Вебер предложил свой закон, его обобщил немецкий физик Густав Фехнер (Fechner, 1860). Фехнер предположил, что не только ЕЗР является постоянной частью интенсивности стимула, но и что одно ЕЗР перцептивно равно любому другому ЕЗР. (Следовательно, воспринимаемая величина стимула есть просто определенное количество ЕЗР, на которое она превышает абсолютный порог.) Из этих двух предположений Фехнер вывел закон, согласно которому воспринимаемая величина стимула пропорциональна десятичному логарифму его физической интенсивности. Этот закон известен как закон Фехнера. Например, если интенсивность удваивается, скажем, от 10 до 20 единиц, то воспринимаемая величина стимула возрастает только от 1 до 1,3 (приближенно). Следовательно, при удвоении интенсивности света воспринимаемая яркость не удваивается (100-ваттная лампочка не выглядит вдвое ярче 50-ваттной), при удвоении громкости звука не удваивается воспринимаемая громкость, и так далее для запаха, вкуса, осязания и других чувств. В общем, при возрастании физической интенсивности стимула его воспринимаемая интенсивность возрастает сначала быстро, а затем все медленнее и медленнее (рис. 4.3). Как и закон Вебера, закон Фехнера — это только приближение; современные исследователи предложили множество его вариантов, чтобы он лучше соответствовал многочисленным экспериментальным результатам (Stevens, 1957). Тем не менее логарифмическая зависимость оказалась полезной во многих практических применениях психологии ощущений.

 

Рис. 4.3. Влияние интенсивности стимулов на простое время реакции.Среднее время реакции для всех качеств стимулов сокращается по мере возрастания интенсивности подлежащих обнаружению стимулов. При определенном уровне интенсивности дальнейшее увеличение интенсивности уже не приводит к дальнейшему увеличению скорости реакции.

 

Время реакции.Заметьте, что мы обсуждали ситуации, в которых обнаружение крайне затруднено, поскольку стимулы едва различимы (абсолютный порог) либо различия между стимулами незначительны (обнаружение изменений). Однако даже тогда, когда стимулы и различия между ними легко воспринимаются, в одних случаях обнаружить их легче, чем в других. Так, например, большинство людей отличает красный от зеленого легче, чем от оранжевого, даже несмотря на то, что мы практически никогда не ошибаемся, различая эти цвета. Поскольку методы исследований обнаружения основаны на том, что их участники делают ошибки, эти методы не могут использоваться в ситуациях, в которых различия между стимулами легко воспринимаются. Для измерения обнаружения изменений в этих ситуациях психологи часто измеряют время реакции, или время, прошедшее между началом предъявления стимула и началом проявленной реакции. Эту концепцию ввел психолог и физиолог Герман фон Гельмгольц (1850), использовавший время реакции как приближенный показатель скорости, с которой нервы передают информацию.

Существует два типа времени реакции. Простое время реакции предполагает нажатие на кнопку или какое-либо другое простое действие, например движение глаз или голосовой сигнал, сразу после обнаружения стимула. Такие реакции широко используются для измерений в исследованиях простого обнаружения. Чаще всего оказывается, что чем меньше интенсивность стимула, тем больше время реакции. На рис. 4.3 показано типичное время реакции на начало звукового тона в зависимости от интенсивности тона (Chocolle, 1940). Хотя тон всегда значительно превышает абсолютный порог для слуха, время реакции меньше для более интенсивных тонов. Аналогичные результаты были получены для простого времени реакции при обнаружении зрительных и тактильных стимулов (Coren, Ward & Enns, 1999).

Время реакции выбора предполагает выбор одной из нескольких различных реакций, в зависимости от предъявляемого стимула (например, нажать правую кнопку в ответ на красный свет или левую кнопку в ответ на зеленый свет). Этот тип реакции широко используется в исследованиях на различение. Как вы и могли предположить, чем меньше различие между стимулами, тем больше время реакции (Coren, Ward & Enns, 1999).

 



Дата добавления: 2019-12-09; просмотров: 621;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.