Восприятие паттернов
Остротой зрения (визуальной остротой) называется способность глаза различать детали. Существует несколько способов измерения остроты зрения, но наиболее широко распространенным является использование знакомой всем оптометрической таблицы, какие висят в офтальмологических кабинетах. Данная таблица была разработана Германом Снелленом в 1862 году Острота зрения по Снеллену определяется по отношению к зрению человека, не нуждающегося в очках. Так, острота 20/20 означает, что данный индивидуум способен различать на расстоянии 20 футов (ок. 3 метров) буквы такого же размера, как и человек, обладающий нормальным зрением. Острота 20/100 означает, что данный индивидуум может различать на расстоянии 20 футов буквы такого размера, какие человек, обладающий нормальным зрением, может различать на расстоянии 100 футов (ок. 15 метров). В этом случае острота зрения тестируемого индивидуума ниже нормы.
По ряду причин использование таблицы Снеллена не всегда является лучшим способом измерения остроты зрения. Во-первых, данный метод не подходит для маленьких детей и других категорий людей, не умеющих читать. Во-вторых, этот метод предназначен только для измерения остроты зрения только по отношению к объектам, воспринимаемым на расстоянии (20 футов); он не позволяет измерять остроту зрения при чтении и выполнении других задач, предполагающих близкие расстояния. В-третьих, при использовании данного метода не проводится различения между пространственной остротой (способностью различать детали формы) и остротой контраста (способностью воспринимать различия по яркости (точнее по светлоте, поскольку в тесте используются не цветные, а монохромные изображения — Прим. пер.)). На рис. 4.13 представлены примеры типичных форм, используемых при тестировании остроты зрения; стрелки указывают на наиболее важные с точки зрения различения детали. Обратите внимание, что каждая такая деталь представляет собой не что иное, как зону зрительного поля, в которой имеет место изменение яркости от светлого участка к темному (Coren, Ward, & Enns, 1999).
Рис. 4.13. Некоторые типовые формы, используемые при диагностике остроты зрения.Стрелки указывают на детали, распознаваемые в каждом случае.
Сенсорный опыт, связанный с различением паттернов, определяется тем, каким образом нейроны регистрируют информацию о светлоте и темноте. Наиболее примитивным (базовым) элементом визуального паттерна является край или контур, зона, в которой имеет место переход от светлого к темному или наоборот. Одним из первичных факторов, оказывающих влияние на регистрацию краев, является характер взаимодействия ганглиозных клеток на сетчатке (см. рис. 4.11). Эффект такого рода взаимодействий можно наблюдать, рассматривая паттерн, известный как решетка Германца, показанная на рис. 4.14. Вы можете видеть серые пятна на пересечениях белых линий, разделяющих черные квадраты. Неприятное ощущение, возникающее при рассматривании этого паттерна, вызвано тем, что в том конкретном пересечении, на котором вы фокусируетесь, вы не видите серого пятна; только в тех пересечения, на которые вы не смотрите, возникает иллюзия присутствия серых пятен.
Рис. 4.14. Решетка Германна.Серые пятна, наблюдаемые на пересечении белых линий, являются иллюзией. Они видимы вашим глазом и мозгом, но не присутствуют на странице. Чтобы убедиться в том, что в действительности они отсутствуют, переместите взгляд на другие пересечения; вы убедитесь в том, что на пересечении, на которое вы смотрите прямо, серого пятна никогда не видно. Они появляются только в тех пересечениях, которые попадают в ваше периферическое зрение.
Данная иллюзия является непосредственным результатом взаимосвязей между ганглиозными клетками, снижающими активность клеток, смежных с наиболее активной. Так, ганглиозная клетка, фокусирующаяся на одном из пересечений белых линий решетки, получает сигнал, снижающий уровень сигналов, исходящих от соседних клеток (firing), находящихся со всех четырех сторон (то есть клеток, расположенных выше, ниже, правее и левее от пересечения). С другой стороны, ганглиозная клетка, находящаяся на белой горизонтальной или вертикальной линии, будет получать сигнал, снижающий активность исходящего сигнала только двух соседних клеток, находящихся на той же линии. В результате пересечения кажутся темнее, чем белые горизонтальные и вертикальные линии, потому что в этих участках находится максимальное число клеток, получающих сигналы, снижающих уровень исходящего сигнала.
Но почему темные пятна появляются только на пересечениях, на которые вы непосредственно не смотрите? Это происходит потому, что дистанции, на которые передается сигнал, значительно короче в центре зрительного поля, чем на периферии. Благодаря такому расположению ганглиозных клеток острота нашего зрения значительно выше в центре зрительного поля, чем на периферии.
Восприятие цвета
Свет различается только длиной волны. Зрительная система человека совершает с длиной волны нечто удивительное: она превращает ее в цвет, причем из разных длин волн получаются различные цвета. Например, свет с короткой длиной волны (450-500 нанометров) выглядит синим; свет со средней длиной волны (примерно 500-570 нанометров) выглядит зеленым; а свет с большой длиной волны (620-700 нанометров) выглядит красным (рис. 4.15).
Рис. 4.15. Солнечный спектр.Числами обозначены длины волн (в нанометрах, нм), соответствующие различным цветам.
Призма расщепляет свет на различные длины волн. Короткие волны кажутся синими, средние — зелеными, а длинные — красными.
В дальнейшем обсуждении цветового восприятия мы будем говорить только о длинах волн. Это совершенно адекватно в случаях, когда первоисточником ощущения цвета является объект, излучающий свет, например солнце или лампочка. Однако чаще источником цветовых ощущений является объект, отражающий свет, когда его освещает источник света. В таких случаях восприятие цвета объекта частично определяется длинами волн, которые объект отражает, частично — другими факторами. Один из таких факторов — окружающий цветовой фон. Богатое разнообразие других цветов в пространственном окружении объекта позволяет наблюдателю правильно воспринимать цвет объекта, даже когда длины волн, исходящих от объекта и достигающих глаза, не вполне точно отражают характерный цвет объекта (Land, 1986). Способность воспринимать цвет любимой джинсовой куртки как индиго, несмотря на значительные вариации окружающего освещения, носит название «константность цвета». Мы будем более подробно обсуждать эту тему в гл. 5.
Ощущение цвета.В некоторых отношениях ощущение цвета — явление субъективное. Но для научного изучения цветоощущения нам следует описывать его общепринятыми терминами. Представим себе пятно света на темном фоне. С феноменологической точки зрения его характеризуют 3 параметра: светлота, цветовой тон и насыщенность. Светлота показывает, насколько белым видится свет (ее следует отличать от яркости: очень слабо освещенный объект может тем не менее казаться белым). Два других параметра относятся непосредственно к самому цвету. Цветовым тоном называется качество, обозначаемое названием цвета, например «красный» или «зеленовато-желтый». Насыщенность означает наполненность цветом или чистоту цвета. Ненасыщенные цвета выглядят бледными (например, розовый); насыщенные цвета на вид не содержат белого. Художник Альберт Манселл предложил схему описания окрашенных поверхностей путем присваивания им одного из 10 названий цветового тона и двух чисел: одного — для указания насыщенности, другого — светлоты. Цветовая система Манселла представлена в виде цветового тела (рис. 4.16).
Рис. 4.16. Цветовое тело.Три параметра цвета можно отобразить на двойном конусе. Цветовой тон представлен точками, расположенными по окружности, насыщенность — точками вдоль радиуса, а светлота — точками на вертикальной оси. Вертикальное сечение цветового тела показывает различную насыщенность и светлоту для одного тона.
Наиболее важные характеристики цвета и звука сведены в табл. 4.3.
Таблица 4.3. Физика и физиология света и звука
Стимул | Физический атрибут (показатель) | Единицы измерения | Психологические ощущения |
Свет | Длина волны | Нанометры | Оттенок (цветовой тон) |
Интенсивность | Фотоны | Яркость | |
Чистота (тона) | Уровень серого (градации) | Насыщенность | |
Звук | Частота | Герцы | Высота (тона) |
Амплитуда | Децибеллы | Громкость | |
Сложность | Гармоники | Тембр |
Имея способы описания цвета, можно поставить вопрос: сколько цветов человек может различить? В диапазоне 400-700 нанометров, к которому мы чувствительны, можно различить 150 тонов или, иначе говоря, 150 длин волн. Это означает, что в среднем мы можем различать длины волн, отличающиеся всего на 2 нанометра; то есть для длины волны ЕЗР составляет 2 нанометра. С учетом того, что у каждого из 150 различимых тонов может быть много различных величин светлоты и насыщенности, общее число цветов, которые человек может различить, оценивается более чем в 7 миллионов! Кроме того, по оценкам Национального бюро стандартов, примерно для 7500 из этих цветов у нас есть наименования; трудно даже представить себе какую-либо другую сферу человеческого опыта, столь же широко закодированную в языке. Эти цифры дают определенное представление о роли цвета в жизни человека (Coren, Ward & Enns, 1999).
Смешение цветов.Примечательно, что все различаемые нами оттенки можно получить путем смешения всего нескольких основных цветов. Предположим, мы проецируем на один и тот же участок сетчатки свет различных цветов. В результате этого цветового смешения получится новый цвет. Например, смесь света с длиной волны 650 нм (красный) и света с длиной волны 500 нм (зеленый) в надлежащей пропорции будет выглядеть желтой; по виду эта смесь будет в точности соответствовать желтому свету с длиной волны 580 нм. Точное соответствие желтому свету в 580 нм можно также получить при смешении света других, а не только этих цветов. Таким образом, световые смеси, физические компоненты которых весьма различны, могут выглядеть одинаково.
Самое время оговориться: здесь и во всем этом разделе мы имеем в виду смешение света по принципу сложения (аддитивности); мы не говорим о смешивании красок или пигментов, которое происходит по принципу вычитания (субтрактивности) (рис. 4.17). Для красок и для света правила смешения цветов различны. Этого следовало ожидать. При смешивании красок меняется сам физический стимул (смешивание происходит вне глаза), так что это — предмет изучения для физиков. Смешение света, наоборот, происходит в самом глазу, и значит, это тема психологическая.
Рис. 4.17. Смешение цветов путем сложения и вычитания.При смешении цветов путем сложения (на рис. слева) происходит слияние световых потоков. При смешении красного и зеленого цвета получается желтый, зеленого и пурпурного — голубой и т. д. В центре, где перекрываются все три цвета, смесь выглядит белой. Смешение цветов путем вычитания (справа) происходит при смешивании красителей или при прохождении света сквозь цветовые фильтры, наложенные один на другой. При смешении сине-зеленого и желтого получится зеленый, а при смешении дополнительных цветов, например синего и желтого, получится черный.
В отношении смешения света можно сформулировать общее положение: комбинация трех пучков света с различными длинами волн дает свет почти любого цвета, при условии что один пучок света будет взят из длинноволновой части спектра (красный), другой — из средней (зеленый или желто-зеленый), а третий — из коротковолновой (синий или фиолетовый). Это иногда называют законом трех первичных цветов. В качестве иллюстрации приведем эксперимент на сравнение цветов, в котором испытуемого просят путем смешения грех цветных пучков света подобрать цвет, соответствующий цвету эталонного источника света. Если для смешения используются источники света из трех частей спектра — например, с длинами волн 450 нм (синий), 560 нм (зеленый) и 640 нм (красный), — то испытуемый всегда сможет подобрать свет, соответствующий эталонному. Однако если испытуемому дать для смешения только два источника света — например, с длиной волны 450 нм и 640 нм, — то он не сможет подобрать пару ни для какого эталонного источника. Число 3, следовательно, здесь имеет важное значение.
Иногда источники света, весьма различающиеся физически, могут выглядеть для человека одинаково, из чего нам придется заключить, что к таким различиям мы слепы. Без такой слепоты воспроизведение цвета было бы невозможно. Для реалистичного воспроизведения цвета в фотографии и на телевидении используется тот факт, что путем смешения всего нескольких цветов можно получить широкий диапазон цветов. Если, например, вы посмотрите на свой телеэкран через увеличительное стекло, то обнаружите, что он состоит из точек всего трех цветов (синего, зеленого и красного). Аддитивное смешение происходит благодаря тому, что точки расположены настолько близко, что их изображения на сетчатке перекрываются (способ представления цветовых смесей показан на рис. 4.17).
Дефекты цветовосприятия.Большинство людей подбирают многие цвета, смешивая три первичных цвета, но некоторые люди добиваются этого путем смешения только двух первичных цветов. У таких людей — их называют дихроматы — дефект цветового зрения, поскольку они не различают некоторые цвета, которые обычные люди (трихроматы) могут различить. Но дихроматы все-таки могут различать цвета. Иначе обстоят дела у монохроматов, которые неспособны вообще различать длины волн. У них подлинная цветовая слепота. (Для выявления цветовой слепоты используется тест, аналогичный приведенному на рис. 4.19, — это более простая процедура по сравнению с экспериментом, в котором применяется смешивание цветов.) В большинстве случаев дефекты цветового восприятия имеют генетическое происхождение. Цветовая слепота встречается чаще у мужчин (2%), чем у женщин (0,03%), поскольку критические гены здесь — это рецессивные гены в Х-хромосоме (Nathans, 1987).
Рис. 4.19. Тестирование цветовой слепоты.В тесте на цветовую слепоту используются две картинки. На левой картинке некоторые индивиды, страдающие определенными видами красно-зеленой слепоты, увидят только цифру 5, некоторые — только цифру 7, а некоторые — вообще никаких цифр. Сходным образом, на правой картинке люди с нормальным зрением видят число 15, тогда как люди с красно-зеленой слепотой никакого числа не увидят.
Теории цветового зрения. Имеются две основные теории цветового зрения. Первую из них выдвинул Томас Янг в 1807 году. 50 лет спустя его теорию развил Герман фон Гельмгольц.
Согласно трихроматической теории Янга—Гельмгольца (эту теорию называют также трехкомпонентной.— Прим. ред.), хотя человек может различать множество цветов, у него есть только три типа цветовых рецепторов (колбочек). Каждый рецептор чувствителен к широкому диапазону длин волн, но сильнее всего он реагирует на узкий участок диапазона. Как показано на рис. 4.20, рецептор коротких волн наиболее чувствителен к волнам короткой длины (синий цвет), рецептор средних волн — к волнам средней длины (зеленый и желтый цвет), а рецептор длинных волн — к длинным волнам (красный). Совместная работа этих трех рецепторов и определяет ощущение цвета. То есть свет с определенной длиной волны стимулирует эти три типа рецепторов в разной степени, и конкретное соотношение активности в этих рецепторах ведет к ощущению определенного цвета. Следовательно, в дополнение к нашему прежнему разговору о кодировании качества стимула можно сказать, что, согласно трихроматической теории, цветовое качество кодируется паттерном активности трех рецепторов, а не путем использования отдельных рецепторов для каждого цвета.
Рис. 4.20. Трихроматическая теория.Функции ответов рецепторов коротких, средних и длинных волн, согласно трихроматической теории. Эти кривые позволяют определять относительную реакцию каждого рецептора на свет любой длины волны. В показанном здесь примере для определения реакции каждого рецептора на свет с длиной волны 500 нм надо провести линию вверх от отметки «500 нм» и затем пометить, где она пересекает каждую из кривых (по: Wald & Brown, 1965).
Трихроматическая теория объясняет связанные с цветовым зрением факты, которые мы уже упоминали. Во-первых, человек может различать разные длины волн потому, что они воздействуют на три типа рецепторов, вызывая у них неодинаковую реакцию. Во-вторых, закон трех первичных цветов вытекает непосредственно из трихроматической теории. Для любого цвета мы можем подобрать комбинацию из трех достаточно отстоящих друг от друга длин волн, потому что эти три различные волны активируют три различных типа рецепторов, и именно активность этих рецепторов стоит за восприятием тестового цвета. (Теперь мы понимаем значение числа три.) В-третьих, трихроматическая теория объясняет различные дефекты цветовосприятия отсутствием одного или более из трех типов цветовых рецепторов: у дихроматов с рождения отсутствуют рецепторы одного типа, а у монохроматов — два из трех типов рецепторов. Помимо объяснения этих давно известных фактов, трихроматическая теория позволила биологам открыть эти три типа рецепторов. Теперь мы знаем, что в сетчатке глаза человека действительно сосуществуют колбочки трех типов.
Несмотря на свои успехи, трихроматическая теория не может объяснить некоторые хорошо известные явления цветового восприятия. В 1878 году Эвальд Геринг заметил, что с феноменологической точки зрения все три цвета можно описать как состоящие из одного или двух следующих ощущений: красного, зеленого, желтого и синего. Геринг отметил также, что человек никогда не воспринимает что-либо как красновато-зеленое или желтовато-синее; смесь красного и зеленого скорее будет выглядеть желтой, а смесь желтого и синего — скорее белой. Из этих наблюдений следует, что красный и зеленый образуют оппонентную пару, так же как желтый и синий, и что цвета, входящие в оппонентную пару, не могут восприниматься одновременно. Понятие оппонентных пар получило дальнейшую поддержку из исследований, в которых испытуемый сначала смотрел на цветной свет, а затем — на нейтральную поверхность. При рассматривании нейтральной поверхности испытуемый говорил, что видит на ней цвет, дополнительный первоначальному (рис. 4.21).
Рис. 4.21. Цветовой круг.Простой способ представления цветовых смесей — это цветовой круг. Спектральные цвета (цвета, соответствующие длинам волн в диапазоне чувствительности человека) представлены пятнами, расположенными по периметру круга. Два конца спектра не сходятся; пространству между ними соответствуют неспектральные красные и пурпурные тона, которые можно получить при смешении длинных и коротких волн. Внутри круга находятся цветовые смеси. Цвета, расположенные ближе к центру круга, — менее насыщенные (белее); белый цвет находится в самом центре. Смеси любых двух цветов располагаются на прямой линии, соединяющей два пятна. Если линия проходит через центр круга, то смесь этих цветов, взятых в нужной пропорции, будет выглядеть белой; такие пары цветов называются дополнительными цветами.
Эти феноменологические наблюдения побудили Геринга предложить другую теорию цветового зрения, названную теорией оппонентных цветов. Геринг полагал, что в зрительной системе имеются два типа цветочувствительных элементов. [В контексте теории Геринга «элемент» следует понимать как устройство, дающее противоположные реакции на цвета оппонентной пары. Согласно Герингу, имеются три таких пары: помимо упомянутых в оригинале двух основных третья пара представляет соотношение «белое—черное». — Прим. ред.] Один тип реагирует на красный или зеленый, другой — на синий или желтый. Каждый элемент противоположно реагирует на свои два оппонентных цвета: у красно-зеленого элемента, например, сила реакции возрастает при предъявлении красного цвета и снижается при предъявлении зеленого. Поскольку элемент не может реагировать сразу в двух направлениях, при предъявлении двух оппонентных цветов одновременно воспринимается белый цвет (рис. 4.21). Теория оппонентных цветов может объяснить наблюдения Геринга, относящиеся к цвету, а также другие факты. Она объясняет, почему мы видим именно те цвета, которые видим. Мы воспринимаем только один тон — красный или зеленый и желтый или синий, — когда баланс смещен только у одного типа оппонентной пары, и воспринимаем комбинации тонов, когда баланс смещен у обоих типов оппонентных пар. Объекты никогда не воспринимаются как красно-зеленые или желто-синие потому, что элемент не может реагировать в двух направлениях сразу. Кроме того, эта теория объясняет, почему испытуемые, которые сначала смотрели на цветной свет, а затем — на нейтральную поверхность, говорят, что видят дополнительные цвета; если, например, испытуемый сначала смотрит на красное, то красная компонента пары утомляется, в результате чего вступает в игру зеленая компонента.
Таким образом, есть две теории цветового зрения — трихроматическая и теория оппонентных цветов, и каждая из них какие-то факты может объяснить, а какие-то нет. Десятилетиями эти две теории считались конкурентными, пока исследователи не предложили компромисс в виде двухстадийной теории, согласно которой три типа рецепторов, предусмотренных в трихроматической теории, поставляют информацию для цвето-оппонентных пар, расположенных на более высоком уровне зрительной системы (Hurvich & Jameson, 1974). Данная точка зрения предполагает, что в зрительной системе должны существовать нейроны, функционирующие как блоки оппонентных цветов и обрабатывающие зрительную информацию после ретины (сетчатки) (которая содержит три рода рецепторов согласно трехкомпонентной теории). И действительно, такие цветооппонентные нейроны были обнаружены в таламусе — одной из промежуточных станций между сетчаткой и зрительной корой (DeValois & Jacobs, 1984). Эти клетки обладают спонтанной активностью, которая повышается при реакции на один диапазон длин волн и снижается при реакции на другой. Так, некоторые клетки, расположенные на более высоком уровне зрительной системы, возбуждаются быстрее, когда сетчатка стимулируется синим светом, чем когда она стимулируется желтым светом; такие клетки составляют биологическую основу сине-желтой оппонентной пары. Суммирующая нейронная проволочная диаграмма, показывающая, как могут быть связаны между собой трихроматическая и оппонентно-процессуальная теории, представлена на рис. 4.22.
Рис. 4.22. Как связаны между собой трихроматическая теория и теория оппонентных процессов.На схеме показано, как три типа рецепторов связаны с продуцированием оппонентно-процессуальных нейронных реакций на поздних стадиях обработки. Числа в трапециях, изображающих колбочки, указывают длины волн, соответствующих максимальной чувствительности. Линии со стрелками соответствуют связям, повышающим активность; линии с точками соответствуют связям, понижающим активность. Заметьте, что это лишь небольшая часть всей системы. Существует и другой набор оппонентно-процессуальных элементов, с противоположным характером повышающих и понижающих активность связей.
Это исследование цветового зрения является замечательным примером успешного взаимодействия психологического и биологического подходов к проблеме. В рамках трихроматической теории было выдвинуто предположение, что существуют три типа цветовых рецепторов, и в последующих биологических исследованиях было установлено наличие в сетчатке колбочек трех типов. В теории оппонентных цветов было высказано предположение о существовании в зрительной системе элементов другого рода, и в дальнейшем биологи нашли цветооппонентные клетки в таламусе. Более того, для успешной интеграции этих двух теорий требовалось, чтобы трихроматические клетки поставляли информацию цветооппонентным клеткам, — и это также подтвердилось в последующих биологических исследованиях. Так что во многих случаях проблемная работа на психологическом уровне указывала путь к биологическим открытиям. Неудивительно, что многие ученые приняли анализ цветового зрения в качестве прототипа для анализа работы других сенсорных систем.
Слух
Так же как и зрение, слух является важнейшим средством получения информации об окружении. Для многих из нас это основной канал коммуникации и средство передачи музыки. Как мы увидим, все это возможно благодаря тому, что небольшие изменения звукового давления приводят в колебательное движение мембрану внутреннего уха.
Мы будем рассматривать слух по тому же плану, что и зрение. Сначала мы рассмотрим природу физического стимула, к которому чувствителен слух, потом опишем слуховую систему, уделив особое внимание преобразованиям в рецепторах, и наконец обратимся к кодированию интенсивности и качества звука слуховой системой.
Звуковые волны
Звук возникает вследствие движения или вибрации объекта, — например, когда ветер дует сквозь ветви деревьев. Когда что-либо движется, молекулы находящегося впереди воздуха сжимаются. Эти молекулы толкают другие молекулы и затем возвращаются в исходное положение. Так волна меняющегося давления (звуковая волна) передается по воздуху, хотя отдельные молекулы воздуха далеко не уходят. Эта волна аналогична ряби на поверхности пруда, когда туда бросают камень.
Звуковую волну можно описать графиком давления воздуха в зависимости от времени. График давления в зависимости от времени для одного из видов звука показан на рис. 4.23. На нем представлена синусоидальная волна (названная так потому, что она аналогична синусоидальной функции в математике). Звук, соответствующий синусоидальной волне, называется чистым тоном. Такие звуки важны для анализа слуха, потому что более сложные звуки можно разложить на чистые тона, т. е. на ряд различных синусоидальных волн. Чистые тона определяются двумя параметрами, от которых зависит их ощущение человеком. Один параметр — это частота тона. Частота тона — это количество колебаний за одну секунду (или герц), т. е. частота, с которой молекулы двигаются туда-сюда (см. рис. 4.23). Частота — основа воспринимаемой высоты тона, одного из наиболее примечательных качеств звука.
Рис. 4.23. Чистый тон.Вибрирующий камертон создает последовательность волн сжатия и расширения воздуха, подчиняющихся синусоидальному закону. Такой звук называется чистым тоном. Он описывается параметрами частоты и интенсивности. Когда камертон делает 100 колебаний в секунду, он создает звуковую волну со 100 сжатиями в секунду, или с частотой 100 герц. Интенсивность (или амплитуда) чистого тона — это разница в давлении между пиками и впадинами. Форму волны любого звука можно разложить на ряд синусоидальных волн с различной частотой, амплитудой и фазой. Когда эти синусоидальные волны складываются, получается первоначальная форма волны.
Второй параметр чистого тона — его интенсивность (амплитуда), т. е. различие давлений между пиком и впадиной на графике зависимости давления от времени (см. рис. 4.23). Интенсивность — основа восприятия громкости. Интенсивность звука обычно измеряется в децибелах (дБ); росту интенсивности на 10 децибел соответствует увеличение мощности в 10 раз, росту на 20 децибел — увеличение в 100 раз, 30 децибел — 1000 раз и так далее. Например, тихий шепот в беззвучной обстановке библиотеки имеет интенсивность около 30 децибел, в шумном ресторане уровень звука может равняться 70 децибелам, уровень звука на рок-концерте может достигать 120 децибел, а шум взлетающего самолета может превышать 140 децибел. Постоянное воздействие уровня звука, превышающего 100 децибел, может повлечь за собой необратимую потерю слуха.
И последней характеристикой звука является тембр — наше восприятие сложности звука. Практически ни один из звуков, окружающих нас в повседневной жизни, не является столь простым, как чистые тона, о которых мы говорили выше. (Исключение составляют лишь камертоны и некоторые электронные музыкальные инструменты.) Звуки, издаваемые акустическими инструментами, автомобилями, человеческим голосом, животными и водопадами, характеризуются сложными паттернами звукового давления.
<Рис. Музыкальные инструменты производят сложные паттерны звукового давления. Эти паттерны принято называть тембром звука.>
Слуховая система
К слуховой системе относятся уши, некоторые участки мозга и проводящие нервные пути. Нас в первую очередь будут интересовать сами уши; к ним относят не только отростки по обеим сторонам головы, но и весь слуховой орган, большей частью находящийся внутри черепа (рис. 4.24).
Рис. 4.24. Поперечный разрез уха.На рисунке показано общее строение уха. Внутреннее ухо состоит из улитки, содержащей слуховые рецепторы, и вестибулярного аппарата (полукружные каналы и вестибулярные мешочки), служащего органом для чувства равновесия и движения тела.
Как и глаз, ухо содержит две системы. Одна система усиливает и передает звук к рецепторам, после чего за дело принимается другая система, которая преобразует звук в нервные импульсы. Передающая система включает наружное ухо, состоящее из внешнего уха (pinna — ушная раковина) и слухового канала, а также среднее ухо, состоящее из барабанной перепонки и цепочки из трех костей — молоточка, наковальни и стремечка. Система преобразования расположена в части внутреннего уха, называемой улиткой и содержащей рецепторы звука.
<Рис. Если на рок-концерте сидеть или стоять перед акустическими системами, это может вызвать необратимую потерю слуха.>
Рассмотрим передающую систему подробнее (рис. 4.25). Наружное ухо помогает улавливанию звуков и передает их через слуховой канал к упругой мембране, которая называется барабанной перепонкой. Барабанная перепонка — самая наружная часть внутреннего уха. Ее заставляют вибрировать звуковые волны, приходящие по слуховому каналу. Задача внутреннего уха — передать вибрации барабанной перепонки через заполненную воздухом полость к другой мембране, овальному окошечку, служащему воротами ко внутреннему уху и рецепторам. Эту передачу внутреннее ухо осуществляет посредством механического мостика, построенного из молоточка, наковальни и стремечка. От барабанной перепонки вибрации передаются первой из этих косточек, передающей их второй, которая, в свою очередь, передает их третьей, результатом чего являются вибрации овального окошечка. Это механическое приспособление не только передает звуковую волну, но и значительно усиливает ее.
Рис. 4.25. Схематическое строение среднего и внутреннего уха.а) Движения жидкости внутри улитки изгибают базилярную мембрану и стимулируют волосяные клетки, служащие слуховыми рецепторами, б) На поперечном сечении улитки показана базилярная мембрана и волосяные клетки-рецепторы.
Теперь рассмотрим систему преобразования. Улитка — это спиралевидная трубка из костного вещества. Мембраны разделяют ее на секции, заполненные жидкостью; одна из мембран — базилярная, к ней прикреплены слуховые рецепторы (см. рис, 4.25). Эти рецепторы называются волосяными клетками, потому что по строению они похожи на волоски, проникающие в жидкость. Давление на овальном окошечке (соединяющем среднее и внутреннее ухо) создает изменения давления жидкости в улитке, что, в свою очередь, заставляет базилярную мембрану вибрировать, приводя к изгибанию волосяных клеток и появлению электрического импульса. Таков сложный процесс преобразования звуковой волны в электрический импульс. Нейроны, синаптически соединенные с нервными клетками, имеют длинные аксоны, которые образуют часть слухового нерва. Большинство слуховых нейронов соединены с отдельными нервными клетками. В слуховом нерве около 31 000 слуховых нейронов, что гораздо меньше одного миллиона нейронов, составляющих зрительный нерв (Yost & Nielson, 1985). От каждого уха слуховые пути идут к обеим сторонам мозга и заканчиваются на синапсах различных ядер, прежде чем достигают слуховой коры.
Дата добавления: 2019-12-09; просмотров: 680;