Кубическое задание функций алгебры логики.


Как следует из рассмотренного выше, функция алгебры логики (булева функция) может быть задана:

§ аналитически (системой булевых функций);

§ словесным описанием;

§ таблицей истинности;

§ картами (диаграммами) Венна, Вейча, Карно;

§ логической схемой;

Более компактной формой записи функций алгебры логики является форма, когда вместо полного перечисления всех конъюнкций (дизъюнкций) используют номера наборов, на которых функция принимает единичное значение. Так, например, форма записи f(x1x2x3)=V F(0,2,3) означает, что функция от трех переменных принимает единичное значение на 0, 2 и 3 наборах из таблицы истинности. Такая форма записи называется числовой.

Некоторые методы минимизации ориентируются на задание булевой функции в виде кубического покрытия. При этом логическая функция удобно интерпретируется с использованием ее геометрического представления. Так, функцию двух переменных можно интерпретировать как плоскость, заданную в системе координат х1х2. Получится квадрат, вершины которого соответствуют комбинациям переменных. Для геометрической интерпретации функции трех переменных используется куб, заданный в системе координат х1х2х3 .

Новое представление булевой функции получается путем отображения булевой функции n переменных на n-мерный куб (n-куб).

Для отображения булевой функции n переменных на n – кубе устанавливается соответствие между членами СДНФ и вершинами n - куба. На n- кубе определим координатную систему с координатами (e1,......,en), ei=0,1. Установим соответствие между членом СДНФ x1e1 x2e2... xnen и некоторой вершиной e1 ,e2 , ...., en куба. При этом xiei = xi если ei=1, и xiei = xi если ei=0.



Рис.23. Геометрическое представление функции двух и трех переменных

Для отображения булевой функции n переменных на n – кубе устанавливается соответствие между членами СДНФ и вершинами n - куба. На n- кубе определим координатную систему с координатами (e1,......,en), ei=0,1. Установим соответствие между членом СДНФ x1 x2 ... xn и некоторой вершиной e1 ,e2 , ...., en куба.

Каждый набор при кубическом задании ФАЛ называется кубом.

Таблица 14.
  х1 х2 х3 f
-

Как следует из таблицы истинности, функция f образована на трех группах наборов переменных: L={3,4,5,6,7}, D={0,2} и N={1}.

Конъюнкции максимального ранга (конститутиенты единицы) принято называть 0-кубами. Множество 0- кубов образуют кубический комплекс

011

К0 = 101

Над 0-кубами, кодовое расстояние которых равно 1, выполняется операция склеивания, в результате которой образуются новые кубы, содержащие свободные координаты. Свободная (независимая) координата может принимать как нулевое, так и единичное значение, остальные компоненты называются связанными.. Куб, содержащий свободные координаты, покрывает кубы, на которых он образован. Куб с одной независимой координатой х называется кубом первой размерности и в геометрическом представлении это ребро, покрывающее обе вершины. Кубы, образующиеся в результате последовательного выполнения операции склеивания, назовем r-кубами, где r – размерность полученного куба.

 
 


Геометрическая интерпретация сказанного показана на рис. 24. В результате склеивания кубов 101 и 111 (0-кубы, вершины) образован 1-куб 1x1 (ребро), а 1-кубов 00x и 10х - 2-куб х0х (грань).

Рис. 24. Образование новых кубов.

Кубическое представление ФАЛ позволяет обойтись тремя переменными 0,1,х вместо х1, х2,...,хn .

Количество свободных координат в кубе определяет его размерность r, чем больше r тем больше свободных координат и тем меньше входов будет иметь схема.

Цена схемы оценивается количеством входов: ,

где k-количество полученных кубов, n-ri - количество единичных и нулевых значений i-го куба.

Два r-куба могут образовать r+1-куб, если в этих r-кубах все координаты, в том числе и свободные, совпадают, за исключением лишь какой-либо одной, которая в этих кубах имеет противоположное значение.

Ниже приведено изображение куба, соответствующего булевой функции от четырёх переменных (гиперкуб).

Как следует из рисунка, геометрическое представление 4-куба уже довольно сложное. Поэтому для функций, зависящих более чем от четырёх переменных, предпочтительным является аналитическое представление булевых функций.

 
 

Рис. 25. Геометрическое представление функции четырех переменных

 



Дата добавления: 2022-02-05; просмотров: 190;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.