Диаграмма состояний процесса
Необходимо различать системные управляющие процессы, представляющие работу супервизора операционной системы и занимающиеся распределением и управлением ресурсов, от всех других процессов: системных обрабатывающих процессов, которые не входят в ядро операционной системы, и процессов пользователя. Для системных управляющих процессов в большинстве операционных систем ресурсы распределяются изначально и однозначно. Эти процессы управляют ресурсами системы, за использование которых существует конкуренция между всеми остальными процессами. Поэтому исполнение системных управляющих программ не принято называть процессами. Термин задача можно употреблять только по отношению к процессам пользователей и к системным обрабатывающим процессам. Однако это справедливо не для всех ОС. Например, в так называемых «микроядерных» (см. главу 5 «Архитектура операционных систем и интерфейсы прикладного программирования») ОС (в качестве примера можно привести ОС реального времени QNX фирмы Quantum Software systems) большинство управляющих программных модулей самой ОС и даже драйверы имеют статус высокоприоритетных процессов, для выполнения которых необходимо выделить соответствующие ресурсы. Аналогично и в UNIX-системах выполнение системных программных модулей тоже имеет статус системных процессов, которые получают ресурсы для своего исполнения.
Если обобщать и рассматривать не только обычные ОС общего назначения, но и, например, ОС реального времени, то можно сказать, что процесс может находиться в активном и пассивном (не активном) состоянии. В активном состоянии процесс может участвовать в конкуренции за использование ресурсов вычислительной системы, а в пассивном – он только известен системе, но в конкуренции не участвует (хотя его существование в системе и сопряжено с предоставлением ему оперативной и/или внешней памяти). В свою очередь, активный процесс может быть в одном из следующих состояний:
¨ выполнения – все затребованные процессом ресурсы выделены. В этом состоянии в каждый момент времени может находиться только один процесс, если речь идёт об однопроцессорной вычислительной системе;
¨ готовности к выполнению – ресурсы могут быть предоставлены, тогда процесс перейдёт в состояние выполнения;
¨ блокирования или ожидания – затребованные ресурсы не могут быть предоставлены, или не завершена операция ввода/вывода.
В большинстве операционных систем последнее состояние, в свою очередь, подразделяется на множество состояний ожидания, соответствующих определенному виду ресурса, из-за отсутствия которого процесс переходит в заблокированное состояние.
В обычных ОС, как правило, процесс появляется при запуске какой-нибудь программы. ОС организует (порождает или выделяет) для нового процесса соответствующий дескриптор (см. об этом дальше) процесса, и процесс (задача) начинает развиваться (выполняться). Поэтому пассивного состояния не существует. В ОС реального времени (ОСРВ) ситуация иная. Обычно при проектировании системы реального времени уже заранее бывает известен состав программ (задач), которые должны будут выполняться. Известны и многие их параметры, которые необходимо учитывать при распределении ресурсов (например, объём памяти, приоритет, средняя длительность выполнения, открываемые файлы, используемые устройства и т. п.). Поэтому для них заранее заводят дескрипторы задач с тем, чтобы впоследствии не тратить драгоценное время на организацию дескриптора и поиск для него необходимых ресурсов. Таким образом, в ОСРВ многие процессы (задачи) могут находиться в состоянии бездействия, что мы и отобразили на рис. 1.3, отделив это состояние от остальных состояний пунктиром.
За время своего существования процесс может неоднократно совершать переходы из одного состояния в другое. Это обусловлено обращениями, к операционной системе с запросами ресурсов и выполнения системных функций, которые предоставляет операционная система, взаимодействием с другими процессами, появлением сигналов прерывания от таймера, каналов и устройств ввода/вывода, а также других устройств. Возможные переходы процесса из одного состояния в другое отображены в виде графа состояний на рис. 1.3. Рассмотрим эти переходы из одного состояния в другое более подробно.
Процесс из состояния бездействия может перейти в состояние готовности в следующих случаях:
¨ по команде оператора (пользователя). Имеет место в тех диалоговых операционных системах, где программа может иметь статус задачи (и при этом являться пассивной), а не просто быть исполняемым файлом и только на время исполнения получать статус задачи (как это происходит в большинстве современных ОС для ПК);
¨ при выборе из очерёди планировщиком (характерно для операционных систем, работающих в пакетном режиме);
¨ по вызову из другой задачи (посредством обращения к супервизору один процесс может создать, инициировать, приостановить, остановить, уничтожить другой процесс);
¨ по прерыванию от внешнего инициативного1 устройства (сигнал о свершении некоторого события может запускать соответствующую задачу);
¨ при наступлении запланированного времени запуска программы.
Рис. 1.3. Граф состояний процесса
Последние два способа запуска задачи, при которых процесс из состояния бездействия переходит в состояние готовности, характерны для операционных систем реального времени.
Процесс, который может исполняться, как только ему будет предоставлен процессор, а для диск-резидентных задач в некоторых системах – и оперативная память, находится в состоянии готовности. Считается, что такому процессу уже выделены все необходимые ресурсы за исключением процессора.
Из состояния выполнения процесс может выйти по одной из следующих причин:
¨ процесс завершается, при этом он посредством обращения к супервизору передаёт управление операционной системе и сообщает о своем завершении. В результате этих действий супервизор либо переводит его в список бездействующих процессов (процесс переходит в пассивное состояние), либо уничтожает (уничтожается, естественно, не сама программа, а именно задача, которая соответствовала исполнению некоторой программы). В состояние бездействия процесс может быть переведен принудительно: по команде оператора (действие этой и других команд оператора реализуется системным процессом, который «транслирует» команду в запрос к супервизору с требованием перевести указанный процесс в состояние бездействия), или путем обращения к супервизору операционной системы из другой задачи с требованием остановить данный процесс;
¨ процесс переводится супервизором операционной системы в состояние готовности к исполнению в связи с появлением более приоритетной задачи или в связи с окончанием выделенного ему кванта времени;
¨ процесс блокируется (переводится в состояние ожидания) либо вследствие запроса операции ввода/вывода (которая должна быть выполнена прежде, чем он сможет продолжить исполнение), либо в силу невозможности предоставить ему ресурс, запрошенный в настоящий момент (причиной перевода в состояние ожидания может быть и отсутствие сегмента или страницы в случае организации механизмов виртуальной памяти, см. раздел «Сегментная, страничная и сегментно-страничная организация памяти» в главе 2), а также по команде оператора на приостановку задачи или по требованию через супервизор от другой задачи.
При наступлении соответствующего события (завершилась операция ввода/вывода, освободился затребованный ресурс, в оперативную память загружена необходимая страница виртуальной памяти и т. д.) процесс деблокируется и переводится в состояние готовности к исполнению.
Таким образом, движущей силой, меняющей состояния процессов, являются события. Один из основных видов событий – это прерывания.
Дата добавления: 2022-02-05; просмотров: 311;