Алгоритм на псевдокоде


Построение оптимального кода Хаффмена (n,P)

Обозначим

n – количество символов исходного алфавита

P – массив вероятностей, упорядоченных по убыванию

C – матрица элементарных кодов

L – массив длин кодовых слов

Huffman(n,P)

IF (n=2) C[1,1]:=0, L[1]:=1

C[2,1]:=1, L[2]:=1

ELSE q:=P[n-1]+P[n]

j:=Up(n,q) <поиск и вставка суммы>

Huffman(n-1,P)

Down(n,j) <достраивание кодов>

FI

 

Функция Up (n,q) находит в массиве P место, куда вставить число q и вставляет его, сдвигая вниз остальные элементы.

DO (i=n-1, n-2,…,2)

IF (P[i-1]≤q) P[i]:=P[i-1]

ELSE j:=I

OD

FI

OD

P[j]:=q

 

Процедура Down (n,j) формирует кодовые слова.

S:=C[j,*] <запоминание j-той строки матрицы элементарных кодов в массив S>

L:=L[j]

DO (i=j,…,n-2)

C[i,*]:=C[i+1,*] <сдвиг вверх строк матрицы С>

L[i]:=L[i+1]

OD

C[n-1,*]:= S, C[n,*]:= S <восстановление префикса кодовых слов из массива S >

C[n-1,L+1]:=0, C[n,L+1]:=1

L[n-1]:=L+1, L[n]:=L+1

 

 

16.5 Почти оптимальное алфавитное кодирование

Рассмотрим несколько классических побуквенных кодов, у которых средняя длина кодового слова близка к оптимальной. Пусть имеется дискретный вероятностный источник, порождающий символы алфавита А={a1,…,an} с вероятностями pi = p(ai), .

Код Шеннона

Код Шеннонапозволяет построить почти оптимальный код с длинами кодовых слов Li < - log pi +1. Тогда Lcp <H(p1, …,pn)+1. Код Шеннона строится следующим образом.

1. Упорядочим символы исходного алфавита А={a1,a2,…,an} по убыванию их вероятностей: p1≥p2≥p3≥…≥pn.

2. Составим нарастающие суммы вероятностей Qi:

Q0=0, Q1=p1, Q2=p1+p2, Q3=p1+p2+p3, … , Qn=1.

3. Представим Qi в двоичной системе счисления и возьмем в качестве кодового слова первые é- log2più знаков после запятой .

Для вероятностей, представленных в виде десятичных дробей, удобно определить длину кодового слова Li из соотношения

, .

Пример.Пусть дан алфавит A={a1, a2, a3, a4, a5, a6} с вероятностями p1=0.36, p2=0.18, p3=0.18, p4=0.12, p5=0.09, p6=0.07. Построенный код приведен в таблице.

Таблица 11 Код Шеннона

ai Pi Qi Li кодовое слово
a1 a2 a3 a4 a5 a6 1/22≤0.36<1/2 1/23≤0.18<1/22 1/23≤0.18<1/22 1/24≤0.12<1/23 1/24≤0.09<1/23 1/24≤0.07<1/23 0.36 0.54 0.72 0.84 0.93

 

Построенный код является префиксным. Вычислим среднюю длину кодового слова и сравним ее с энтропией. Значение энтропии вычислено при построении кода Хаффмена (H = 2.37).

Lср= 0.36.2+(0.18+0.18).3+(0.12+0.09+0.07).4=2.92< 2.37+1

 



Дата добавления: 2022-02-05; просмотров: 283;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.