Матричные методы умножения


Кроме рассмотренных методов ускоренного умножения существуют методы умножения, основанные на использовании матриц промежуточных результатов.

Пусть имеем сомножители:

Мн = А = аn ... a2 a1

Мт = B = bn ... b2 b1

Рассмотрим схему умножения чисел согласно алгоритму Б. Данная схема умножения может быть представлена в виде матрицы (табл.3).

Каждый элемент ai bj ( i, j = 1, n) принимает значение 0 или 1. Произведение A∙B может быть получено, если суммировать элементы матрицы (по диагонали).

Для суммирования по столбцам могут быть использованы счетчики. Однако при достаточно большом значении величины n потребуются счетчики с большим числом входов, что существенно увеличит время сложения. Но этот принцип умножения может быть реализован на устройствах, имеющих не более трех входов. В качестве их могут быть использованы одноразрядные двоичные сумматоры и полусумматоры.

На рис. 10 приведена структурная схема устройства умножения для реализации матричного алгоритма.

Реализация методов матричного умножения требует большего количества оборудования, чем метод последовательного умножения, и дает больший выигрыш во времени. В связи с увеличением степени интеграции элементной базы ограничения по количеству оборудования становятся не столь строгими.

 



Дата добавления: 2022-02-05; просмотров: 261;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.