Взаимно независимые случайные величины


 

Рассмотрим n взаимно независимых случайных величин Х1, Х2, …, Хn, которые имеют одинаковые распределения, а следовательно, одинаковые характеристики (математическое ожидание, дисперсию и др.). Наибольший интерес представляют числовые характеристики среднего арифметического этих величин.

Обозначим среднее арифметическое n взаимно независимых случайных величин через :

.

Сформулируем положения, устанавливающие связь между числовыми характеристиками среднего арифметического и соответствующими характеристиками каждой отдельной величины.

1. Математическое ожидание среднего арифметического одинаково распределенных взаимно независимых случайных величин равно математическому ожиданию а каждой из величин:

М( ) = а. (5.32)

2. Дисперсия среднего арифметического n одинаково распределенных взаимно независимых случайных величин в n раз меньше дисперсии D каждой из величин:

. (5.33)

3. Среднее квадратическое отклонение n одинаково распределенных взаимно независимых случайных величин в раз меньше среднего квадратического отклонения σ каждой из величин:

. (5.34)

 




Дата добавления: 2021-12-14; просмотров: 348;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.006 сек.