Теплонапруженість деталей


Теплонапруженість деталей двигуна залежить від величини теплового потоку через одиницю площі поверхні чи перетину деталі, її температури, температурного градієнта в стінках і температури поверхонь тертя. Кожний із зазначених параметрів окремо не відбиває теплонапруженості деталі.

Величина теплового потоку залежить від ступеня форсування двигуна, тобто від кількості палива, що спалюється в одиницю об'єму циліндра, і від числа оборотів (частоти підведення теплоти). Тепловий потік, що проходить через різні частини поверхонь деталей двигуна відрізняється, тому температури різних точок деталі неоднакові.

Температура газів у циліндрі циклічно змінюється. Внаслідок цього тепловий потік теж увесь час змінюється. При значному коливанні температури газів у межах одного робочого циклу температура стінки деталі змінюється незначно. У швидкохідних двигунах коливання температури поверхні менше, ніж у тихохідних, внаслідок зменшення часу нагрівання й охолодження деталей. По експеріментальним даним в автомобільних двигунах, що працюють при n = 2000 - 4000 об/хв, температура поверхні поршня коливається в межах ± 2° від середньої. Заміна менш теплопровідного чавуна на більш теплопровідний - алюміній зменшує коливання температури приблизно в 1,4 - 1,6 рази.

Температура поверхні, що стикається з охолоджувачем, практично залишається постійною, а розходження температур за товщиною стінки деталі викликає неоднакове її розширення і визначає температурні напруження в ній. При збільшенні теплового потоку середні температури поверхонь деталі зростають. Підвищення температури стінки можливо до рівня, обумовленого властивостями матеріалу, а в тому випадку, якщо поверхня деталі є поверхнею тертя, то умовами збереження змащення.

Визначити кількість теплоти, що проходить через окремі деталі двигуна (поршень, втулку, клапани і т.п.) з метою визначення їхніх температур і температурних напружень, досить складно. Розмаїтість конструктивних форм деталей і характеру теплообміну між робочим тілом і стінками, далеко не завжди дозволяє врахувати теплові потоки розрахунковим шляхом.

Середня температура поверхні камери згоряння, підрахована по емпіричних залежностях теплообміну від газів до стінки, не характеризує істинної температури, що викликає теплові напруження в деталі. У дійсності деталь руйнується під дією температурних напружень, які викликани місцевим її перегрівом. Для кожного конкретного двигуна найбільше термічно напружені деталі і вузли звичайно виявляються в умовах експлуатації. У цих же умовах аналізом поломок і руйнувань установлюють причини місцевих перегрівів.

Величина теплових потоків, що проходять через деталі двигуна, визначається напруженістю робочого процесу, властивостями матеріалу, товщиною стінок деталі, температурою охолоджувача і швидкістю руху його щодо стінок. Величину теплового потоку через стінки циліндра можна визначити по кількості теплоти, що відводиться охолоджувачем. По експеріментальним даним, частка теплоти, що відводиться з охолоджувачем, для різних двигунів різна і зменшується при збільшенні форсування процесу шляхом підвищення тиску наддуву і збільшенні розмірів циліндра двигуна і складає 0,35-0,10 підведеної теплоти.

Середня величина питомого теплового потоку через стінки циліндра для двигунів різних типів

q = 75 - 300 кДж/(м2×с).

Менші значення відносяться до чотиритактних двигунів без наддуву, а більші - до двотактних форсованих.

Тепловий потік на різних ділянках робочого циліндра неоднаковий. Найбільша кількість теплоти, приблизно до 60%, відводиться через голівку циліндра і приблизно до 40% - через стінки циліндрів і інші деталі двигуна. Найбільше теплонапруженими є ті деталі, яким передається найбільша кількість теплоти - голівка циліндра і деталі, інтенсивне охолодження яких ускладнено (поршень і клапани).

Для того щоб понизити теплонапруженість якої-небудь деталі двигуна, варто зменшити підведення теплоти до неї чи забезпечити більш інтенсивне охолодження стінок, що сприймають теплоту.

Зменшення підведення теплоти до стінок досягається:

1) зниженням середньої температури циклу шляхом охолодження повітря після компресора;

2) скороченням часу згоряння палива;

3) застосуванням спеціальних теплозахисних покрить поверхонь деталей (наприклад, днища поршня).

Інтенсифікація охолодження може бути здійснена:

1) збільшенням активної поверхні охолодження;

2) збільшенням швидкості руху охолоджувача щодо стінки;

3) продувкою камери згоряння, що зменшує температуру внутрішніх поверхонь стінок циліндра;

4) охолодженням поршня.

У неохолоджуваному поршні тепловий потік від його днища спрямований до кілець і юбки і далі до стінок циліндра. Лише незначна частина теплоти передається через бобишки поршня пальцю і через нього - тілу шатуна.

Значна кількість теплоти підводиться до клапанів, від яких вона відводиться через стержні до направляючих і сідел. Внаслідок того, що відвід теплоти від клапанів дуже ускладнений, теплонапруженість їх, особливо випускних, дуже велика. Для збільшення тепловідвода застосовують пустотілі клапани, заповнені легкоплавким металом (натрієм). При нагріванні натрій розплавляється і під час руху клапана переміщається усередині його стержня, переносячи теплоту від голівки клапана до стержня. До ефективних засобів охолодження клапанів відноситься продувка циліндра.

Днище кришки, як і днище поршня, під час роботи двигуна увесь час стикається з робочим тілом. Крім того, через кришку проходить випускний патрубок, що нагрівається випускними газами. У результаті нагрівання днища кришки з'являються температурні напруження, що сумуються з напруженнями від підвищення тиску в циліндрі. У випадку товстої стінки днища кришки вигинаючі напруження зменшуються, а температурні збільшуються. Велика частина тріщин, виявлених в аварійних двигунах, з'являється внаслідок спільної дії вигинаючих і температурних напружень. Найбільше часто тріщини утворяться біля перемичок між клапанами, де днище кришки важко остудити і де встановлюється найбільш висока температура. Вирівнюючи температурне поле днища кришки за допомогою спрямованих потоків охолоджувача, можна знизити температурні напруги.




Дата добавления: 2021-12-14; просмотров: 257;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.