Метод Лагранжа-Эйлера

 

Полное описание движения манипулятора можно получить, применяя метод Лагранжа-Эйлера для неконсервативных систем. Описав кинематику манипулятора с помощью матричного представления Денавита-Хартенберга, можно получить уравнение динамики. Такое совместное использование Д-Х-представления и метода Лагранжа приводит к компактной векторно-математической форме уравнений движения, удобной для аналитического исследования и допускающей реализацию на ЭВМ.

Вывод уравнений динамики движения манипулятора основан на следующем:

1. На описании взаимного пространственного расположения систем координат i-го и (i-1)-го звеньев с помощью матрицы преобразования однородных координат . Эта матрица преобразует координаты произвольной точки относительно i-й системы координаты этой же точки относительно (i-1)-й системы координат.

2. На использовании уравнения Лагранжа-Эйлера:

; , (9-9)

где L-функция Лагранжа (L=K-P);

K-полная кинетическая энергии манипулятора;

P-полная потенциальна энергия манипулятора

-обобщённые координаты манипулятора;

-первая производная по времени обобщённых координат;

-обобщённые силы (или моменты), создаваемые в i-м сочленении для реализации заданного движения i-го звена.

Для того, чтобы воспользоваться уравнением Лагранжа-Эйлера, необходимо выбрать систему обобщённых координат. Обобщённые координаты представляют собой набор координат, обеспечивающий, полное описание положения рассматриваемой физической системы в абсолютной системе координат. Существуют различные системы обобщенных координат, пригодные для описания простого манипулятора с вращательными и поступательными сочленениями. Однако, поскольку углы поворотов в сочленениях непосредственно доступны измерению с помощью потенциометров или других датчиков, то они составляют наиболее естественную систему обобщенных координат. В этом случае обобщённые координаты совпадают с присоединенными переменными манипулятора. В частности, если i-е сочленение вращательное, то , если же i-е сочленение поступательное, то .

 






Дата добавления: 2021-11-16; просмотров: 94; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2021 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.006 сек.