Александрийская математическая школа


 

В древнегреческой культуре обстоятельное развитие получила преж­де всего математика. Уже в V—IV вв. до н.э. в древнегреческой мате­матике были разработаны геометрическая алгебра, теория делимос­ти целых чисел и теория пропорций (Архит), метод «исчерпывания» Евдокса (как прообраз теории пределов), теория отношений Евдокса и др. Качественно новый этап в развитии математики связан с дея­тельностью александрийской математической школы. У ее истоков стоял великий математик древности, педагог и систематизатор мате­матической науки Евклид. О личности Евклида нам известно очень мало. Жил он в последней четверти IV— первой четверти III в. до н.э. Учился в Афинах, затем переехал в Александрию.

В своем основном труде «Начала», состоявшем из 13 книг, Евклид изложил все достижения древнегреческой математики в системати­зированной аксиоматической форме. (Изучение геометрии в сред­ней школе вплоть до самого последнего времени строилось на основе «Начал».) В первых четырех книгах «Начал» излагалась геометрия на плоскости; в пятой и шестой книгах — теория отношений Евдокса; в седьмой, восьмой и девятой книгах — теория целых и рациональных чисел, в основе своей разработанная еще пифагорейцами; в десятой книге — свойства квадратичных иррациональностей; в одиннадцатой книге — основы стереометрии; в двенадцатой книге — метод исчерпы­вания Евдокса, в частности доказываются теоремы, относящиеся к площади круга и объему шара и др.; в заключительной, тринадцатой книге рассматривались свойства пяти правильных многогранников, в которых Платон видел идеальные геометрические образы, выра­жающие основные структурные отношения Космоса. Изложение ма­тематических знаний носило дедуктивный характер, теории выводи­лись из небольшого числа аксиом.

Универсальной ученостью отличался Эратосфен, у которого есть работы не только по математике, но и по астрономии, географии, истории, философии и филологии. Особенно известны его работы по определению размеров земного шара, по географии. В математике Эратосфен известен своими исследованиями целочисленных про­порций, открытием «решетки Эратосфена» (способ выделения простых чисел из любого конечного числа нечетных чисел, начиная с трех.

В Александрии начинал свой творческий путь и Архимед. Именно здесь он сложился как математик. Возвратившись в Сиракузы, Архимед продолжал поддерживать тесные отношения с александрийскими математиками (до нас дошла его переписка с ними). Среди математических работ Архимеда, импульс для которых он получил во время своего пребывания в Александрии, особенно важными являются работы, связанные с развитием метода «исчерпывания» Евдокса и подходом к понятию определенного интеграла.

В александрийской школе творил Никомед, известный открытием алгебраической кривой конхоиды (в полярных координатах эта кривая имеет вид ρ = А + В/cos φ), которую он применял для решения задач удвоения куба и трисекции угла.

Величайшим математиком древности был Аполлоний Пергский. В своем основном сочинении «Конические сечения» он дал теорию конических сечений в такой исчерпывающей форме, что никто из последующих математиков (вплоть до Нового времени) к ней добавить ничего не смог. Аполлоний Пергский непосредственно подошел к основам аналитической и даже проективной геометрии. Им была разработана законченная теория кривых второго порядка, в том числе эллипса. Кроме того, Аполлоний предложил метод описания равномерных периодических движений как результат сложения более простых — равномерных круговых движений. Это стало важнейшей предпосылкой создания геоцентрической системы К. Птолемеем.

 



Дата добавления: 2021-11-16; просмотров: 399;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.