Общие понятия парной регрессии

 

В общем случае парная регрессия представляет собой зависимость между двумя переменными – y и x, т. е. модель вида: , где y– зависимая переменная (результативный признак); x – независимая, или объясняющая, переменная (признак-фактор). Знак «^» означает, что между переменными x и y нет строгой функциональной зависимости, поэтому практически в каждом отдельном случае величина y складывается из двух слагаемых: , где y – фактическое значение результативного признака; – теоретическое значение результативного признака, найденное исходя из уравнения регрессии; ε – случайная величина, характеризующая отклонения реального значения результативного признака от теоретического, найденного по уравнению регрессии.

Случайная величина ε называется также возмущением. Она включает влияние не учтенных в модели факторов, случайных ошибок и особенностей измерения. Ее присутствие в модели порождено тремя источниками: спецификацией модели, выборочным характером исходных данных, особенностями измерения переменных.

В парной регрессии выбор вида математической функции может быть осуществлен тремя методами:

1) графическим;

2) аналитическим (на основе анализа теории изучаемой взаимосвязи);

3) экспериментальным.

При изучении зависимости между двумя признаками графический метод подбора вида уравнения регрессии достаточно нагляден. Он основан на поле корреляции. Основные типы кривых, используемые при количественной оценке связей, представлены на рисунке 2.1.

 

Рисунок 2.1 - Основные типы кривых, используемые при количественной оценке связей между двумя переменными

 

Значительный интерес представляет аналитический метод выбора типа уравнения регрессии. Он основан на изучении материальной природы связи исследуемых признаков.

При обработке информации на компьютере выбор вида уравнения регрессии обычно осуществляется экспериментальным методом, т. е. путем сравнения величины остаточной дисперсии (Dост), рассчитанной при разных моделях.

Если уравнение регрессии проходит через все точки корреляционного поля, что возможно только при функциональной связи, когда все точки лежат на линии регрессии , то фактические значения результативного признака совпадают с теоретическими , т.е. они полностью обусловлены влиянием фактора x. В этом случае остаточная дисперсия Dост = 0.

В практических исследованиях, как правило, имеет место некоторое рассеяние точек относительно линии регрессии. Оно обусловлено влиянием прочих, не учитываемых в уравнении регрессии, факторов. Иными словами, имеют место отклонения фактических данных от теоретических Величина этих отклонений и лежит в основе расчета остаточной дисперсии:

где n - размерность исследуемой выборки (количество наблюдений);

m – число параметров уравнения регресии.

Чем меньше величина остаточной дисперсии, тем меньше влияние не учитываемых в уравнении регрессии факторов и тем лучше уравнение регрессии подходит к исходным данным.

Считается, что число наблюдений должно в 7-8 раз превышать число рассчитываемых параметров при переменной x. Это означает, что искать линейную регрессию, имея менее 7 наблюдений, вообще не имеет смысла. Если вид функции усложняется, то требуется увеличение объема наблюдений, ибо каждый параметр при x должен рассчитываться хотя бы по 7 наблюдениям. Значит, если в ходе эконометрического исследования сделано предположение о форме взаимосвязи факторов на основе параболы второй степени ( ), то требуется объем информации, состоящий уже из не менее 14 наблюдений.

 






Дата добавления: 2018-05-10; просмотров: 891; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2022 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.