Задача о работе силы.
Какую работу производит сила F(M) при перемещении точки M по дуге AB? Если бы дуга AB была отрезком прямой, а сила была бы постоянной по величине и направлению при перемещении точки M по дуге AB, то работу можно было бы вычислить по формуле , где - угол между векторами. В общем случае эту формулу можно использовать для построения интегральной суммы, предполагая силу постоянной на элементе дуги достаточно малой длины. Вместо длины малого элемента дуги можно взять длину стягивающей ее хорды , так как эти величины – эквивалентные бесконечно малые величины при условии (первый семестр). |
1. Организуем разбиение области- дуги AB на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и (условие А)
2. Отметим на элементах разбиения «отмеченные точки» Mi и вычислим в них значения функции
3. Построим интегральную сумму , где вектор, направленный по хорде, стягивающей -дугу .
4. Переходя к пределу при условии (условие В), получим криволинейный интеграл второго рода как предел интегральных сумм (и работу силы):
.Часто обозначают
Дата добавления: 2017-11-21; просмотров: 873;