Полосы равной толщины.


Другой вид интерференции света в тонких плёнках, толщина которых меняется её по поперечному сечению, получил название интерференционных полос равной толщины. Для изучения этого явления рассмотрим плёнку переменной толщины в виде клина (рис. 5). Рассмотрим падающую на поверхность диэлектрического клина с показателем преломления , где - диэлектрическая проницаемость диэлектрика, плоскую световую монохроматическую волну I с длиной волны (рис. 5).

Отражённые от верхней и нижней граней клина плоские волны I' и I" (рис. 5) пересекутся вблизи поверхности клина из-за не параллельности его граней. Следовательно, при помещении экрана вблизи поверхности клина можно наблюдать интерференционную картину в виде полос,

Вид интерференции света в тонких плёнках, толщина которых меняется её по поперечному сечению, получил название интерференционных полос равной толщины. Для изучения этого явления рассмотрим плёнку переменной толщины в виде клина (рис. 5). Рассмотрим падающую на поверхность диэлектрического клина с показателем преломления , где - диэлектрическая проницаемость диэлектрика, плоскую световую монохроматическую волну I с длиной волны (рис. 5).

Отражённые от верхней и нижней граней клина плоские волны I' и I" (рис. 5) пересекутся вблизи поверхности клина из-за не параллельности его граней. Следовательно, при помещении экрана вблизи поверхности клина можно наблюдать интерференционную картину в виде полос, параллельных ребру клина, которую образуют волны, отразившиеся от его граней в тех точках их поверхности, где клин имеет одинаковую толщину. Это объясняет названия рассматриваемого явления. При облучении поверхности клина белым светом интерференционная картина в виде полос равной толщины оказывается окрашенной в цвета оптического спектра. Для наблюдения интерференционной картины в виде полос равной толщины используется линза (рис. 6), назначение которой состоит в увеличении изображения интерференционной картины, для её визуального наблюдения.

Рис. 5.

Интерференционная картина в виде полос равной толщины широко используется на практике для контроля степени неровности различных поверхностей, плёнок, а также всевозможных покрытий. Если поверхности плёнки неровные, то полосы равной толщины принимают неправильную причудливую форму, связанную с соответствующим контуром равной толщины плёнки.

Рис. 6

Для получения количественных соотношений, характерных для рассматриваемого явления , рассмотрим расчёт интерференционной картины в виде колец Ньютона, которая имеет место при освещении плоской монохроматической световой волной с длиной волны диэлектрической (стеклянной) линзы (рис. 7) с показателем преломления диэлектрика , помещённой на отражающую поверхность (зеркало).

Найдём оптическую разность хода волн, отражённых от нижней поверхности линзы и от поверхности зеркала. Для облегчения расчётов заменим внутреннюю криволинейную поверхность линзы в точке отражения луча плоскостью, параллельной отражающей поверхности (рис. 7). В результате такого упрощения удаётся свести расчёт интерференционной картины в виде колец Ньютона к расчёту интерференционной картины в виде полос равной толщины. Полосы представляют собой концентрические эллипсы при наклонном падении света на линзу или окружности при нормальном падении. Как следует из приведенных выше рассуждений о возможности наблюдения полос равной толщины, соответствующая интерференционная картина наблюдается вблизи поверхности плёнки. В первом приближении можно полагать, что наблюдаемые интерференционные полосы располагаются непосредственно на поверхности плёнки в точке отражения волны. Тогда радиусы колец Ньютона (рис. 7) равны

 

Рис. 7

радиусам окружностей, каждая из которых соответствует точкам нижней поверхности линзы, находящихся на одинаковом расстоянии от отражающей поверхности. Если предположить, что - радиус кривизны линзы, а , то (рис. 4.20)

(6.19)

(6.20)

Радиусы колец Ньютона , соответствующих интерференционным максимумам с номерами , получающихся при нормальном падении световой волны к поверхности пластинки можно найти из (6.19) при и с учётом (6.20):

(6.21)

где - длина световой волны, освещающей линзу.

Чётным значениям соответствуют светлые кольца, а нечётным - тёмные (рис. 8). В частности в центре картины будет находиться тёмное кольцо, вырождающееся в тёмную точку и соответствующее направлению противофазного сложения интерферирующих волн. Если линзу при наблюдении колец Ньютона поднимать вертикально вверх, то из-за

Рис. 8.

увеличения проходимого лучами пути интерференционные кольца, каждое из которых соответствует некоторой постоянной разности хода, будет стягиваться к центру. При этом центр картины по мере поднятия линзы будет становиться попеременно то светлым, то тёмным.

 

 

 

 

 

 

 

 

 

 

 

Заключение

При больших размерах источника происходит также размывание интерференционной картины за счет того, что интерференционные картины от разных точек источника сдвинуты относительно друг друга и общая интерференционная картина исчезает при наложении интерференционного минимума от одних точек источника на максимумы от других точек источника. Пространственная когерентность влияет на степень коллимированности световых пучков. Световые пучки, обладающие большой степенью пространственной когерентности, можно сфокусировать на объектах чрезвычайно малых размеров. Это необходимо для дистанционного анализа этих объектов, обеспечения локальности исследований и эффективной транспортировки излучения по волоконным световодам.

Для получения когерентных колебаний на пленках используется метод деления амплитуд. Интерференция рассматривается и в отраженных световых пучках и в проходящих.

 

 



Дата добавления: 2017-10-04; просмотров: 1186;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.