Лекция №4: Органические соединения клетки. Липиды. Углеводы. Белки.


Аминокислоты — структурные компоненты белков. Белки, или протеины (греч. protos — первостепенный), — это биологические гетерополимеры, мономерами которых являются аминокислоты. Аминокислоты представляют собой низкомолекулярные органические соединения, содержащие карбоксильную (-СООН) и аминную (-NH2) группы, которые связаны с одним и тем же атомом углерода. К атому углерода присоединяется боковая цепь — какой-либо радикал, придающий каждой аминокислоте определенные свойства. У большинства белков спиральные и неспиральные участки полипептидной цепи складываются в трехмерное образование шаровидной формы — глобулу (характерна для глобулярных белков). Глобула определенной конфигурации является третичной структурой белка. Такая структура стабилизируется ионными, водородными, ковалентными дисульфидными связями (образуются между атомами серы, входящими в состав цистеина, цистина и мегионина), а также гидрофобными взаимодействиями. Наиболее важными в возникновении третичной структуры являются гидрофобные взаимодействия; белок при этом свертывается таким образом, что его гидрофобные боковые цепи скрыты внутри молекулы, т. е. защищены от соприкосновения с водой, а гидрофильные боковые цепи, наоборот, выставлены наружу. Многие белки с особо сложным строением состоят из нескольких полипептидных цепей (субъединиц), образуя четвертичную структуру белковой молекулы. Такая структура имеется, например, у глобулярного белка гемоглобина. Его молекула состоит из четырех отдельных полипептидных субъединиц (протомеров), находящихся в третичной структуре, и небелковой части — гема. Только в такой структуре гемоглобин способен выполнять свою транспортную функцию. Под влиянием различных химических и физических факторов (обработка спиртом, ацетоном, кислотами, щелочами, высокой температурой, облучением, высоким давлением и т. д.) происходит изменение вторичной, третичной и четвертичной структур белка вследствие разрыва водородных и ионных связей. Процесс нарушения нативной (естественной) структуры белка называется денатурацией. При этом наблюдается уменьшение растворимости белка, изменение формы и размеров молекул, потеря ферментативной активности и т. д. Процесс денатурации может быть полным или частичным. В некоторых случаях переход к нормальным условиям среды сопровождается самопроизвольным восстановлением естественной структуры белка. Такой процесс называется ренатурацией.

Простые и сложные белки. По химическому составу выделяют белки простые и сложные. К простым относятся белки, состоящие только из аминокислот, а к сложный — белки, содержащие белковую часть и небелковую (простетическую); простетическую группу могут образовывать ионы металлов, остаток фосфорной кислоты, углеводы, липиды и др. Простыми белками являются сывороточный альбумин крови, фибрин, некоторые ферменты (трипсин) и др. К сложным белкам относятся все протеолипиды и гликопротеины; сложными белками являются, например, иммуноглобулины (антитела), гемоглобин, большинство ферментов и т. д.

Функции белков.

1. Структурная. Белки входят в состав клеточных мембран и матрикса органелл клетки. Стенки кровеносных сосудов, хрящи, сухожилия, волосы, ногти, когти у высших животных состоят преимущественно из белков.

2. Каталитическая (ферментативная). Белки-ферменты катализируют протекание всех химических реакций в организме. Они обеспечивают расщепление питательных веществ в пищеварительном тракте, фиксацию углерода при фотосинтезе и т. д.

3. Транспортная. Некоторые белки способны присоединять и переносить различные вещества. Альбумины крови транспортируют жирные кислоты, глобулины - ионы металлов и гормоны, гемоглобин - кислород и углекислый газ. Молекулы белков, входящие в состав плазматической мембраны, принимают участие в транспортировке веществ в клетку.

4. Защитная. Ее выполняют иммуноглобулины (антитела) крови, обеспечивающие иммунную защиту организма. Фибриноген и тромбин участвуют в свертывании крови и предотвращают кровотечение.

5. Сократительная. Благодаря скольжению относительно друг друга актиновых и миозиновых протофибрилл происходит сокращение мышц, а также немышечные внутриклеточные сокращения. Движение ресничек и жгутиков связано со скольжением относительно друг друга микротрубочек, имеющих белковую природу.

6. Регуляторная. Многие гормоны являются олигопептидами или белками (например, инсулин, глюкагон (антагонист инсулина), адренокортикотропный гормон и др.).

7. Рецепторная. Некоторые белки, встроенные в клеточную мембрану, способны изменять свою структуру под воздействием внешней среды. Так происходит прием сигналов извне и передача информации в клетку. Примером может служить фито-хром-светочувствительный белок, регулирующий фотопериодическую реакцию растений, и опсин - составная часть родопсина, пигмента, находящегося в клетках сетчатки глаза.

8. Энергетическая. Белки могут служить источником энергии в клетке (после их гидролиза). Обычно белки расходуются на энергетические нужды в крайних случаях, когда исчерпаны запасы углеводов и жиров.

Ферменты (энзимы). Это специфические белки, которые присутствуют во всех живых организмах и играют роль биологических катализаторов.

Химические реакции в живой клетке протекают при определенной температуре, нормальном давлении и соответствующей кислотности среды. В таких условиях реакции синтеза или распада веществ протекали бы в клетке очень медленно, если бы они не подвергались воздействиям ферментов. Ферменты ускоряют реакцию без изменения ее общего результата за счет снижения энергии активации, т. е. при их присутствии требуется значительно меньше энергии для придания реакционной способности молекулам, которые вступают в реакцию, или реакция идет по другому пути с меньшим энергетическим барьером.

Все процессы в живом организме прямо или косвенно осуществляются с участием ферментов. Например, под их действием составные компоненты пищи (белки, углеводы, липиды и др.) расщепляются до более простых соединений, а из них уже затем синтезируются новые, свойственные данному виду макромолекулы. Поэтому нарушения образования и активности ферментов нередко ведут к возникновению тяжелых болезней.

По пространственной организации ферменты состоят из нескольких пол и пептидных цепей и обычно обладают четвертичной структурой. Кроме того, ферменты могут включать и небелковые структуры. Белковая часть носит название апофермент, а небелковая — кофактор (если это катионы или анионы неорганических веществ, например, Zn2+, Мп2+и т. д.) или кофермент (коэнзим) (если это низкомолекулярное органическое вещество).

Предшественниками или составными частями многих коферментов являются витамины. Так, пантотеновая кислота — составная часть коэнзима А, никотиновая кислота (витамин РР) — предшественник НАД и НАДФ и т. д.

Ферментативный катализ подчиняется тем же законам, что и неферментативный катализ в химической промышленности, однако в отличие от него характеризуется необычайно высокой степенью специфичности (фермент катализирует только одну реакцию или действует только на один тип связи). Этим обеспечивается тонкая регуляция всех жизненно важных процессов (дыхание, пищеварение, фотосинтез и др.), протекающих в клетке и организме. Например, фермент уреаза катализирует расщепление лишь одного вещества — мочевины (H2N-CO-NH2 + Н2О —> 2NH3 + СО2), не оказывая каталитического действия на структурно-родственные соединения.

Липиды

Липиды — это жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе). Липиды принадлежат к простейшим биологическим молекулам.

В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре, жиры называют триацилглщеролами.

Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Из предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят пальмитиновая, стеариновая, арахиновая; из непредельных (ненасыщенных) — олеиновая и линолевая.

Степень ненасыщенности и длина цепей высших карбоновых кислот (т. е. число атомов углерода) определяют физические свойства того или иного жира.

Жиры с короткими и непредельными кислотными цепями имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества (жиры). И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре становятся твердыми. Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, становится мазеобразным, а подсолнечное масло превращается в твердый маргарин. По сравнению с обитателями южных широт в организме животных, обитающих в холодном климате (например, у рыб арктических морей), обычно содержится больше ненасыщенных триацилглицеролов. По этой причине тело их остается гибким и при низких температурах.

В фосфолипидах одна из крайних цепей высших карбоновых кислот триацилглицерола замещена на группу, содержащую фосфат. Фосфолипиды имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны, а неполярные хвостовые группы гидрофобны. Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.

Еще одну группу липидов составляют стероиды (стеролы). Эти вещества построены на основе спирта холестерола. Стеролы плохо растворимы в воде и не содержат высших карбоновых кислот. К ним относятся желчные кислоты, холестерол, половые гормоны, витамин D и др.

К липидам также относятся терпены (ростовые вещества растений — гиббереллины; каротиноиды - фотосинтетичские пигменты; эфирные масла растений, а также воска).

Липиды могут образовывать комплексы с другими биологическими молекулами - белками и сахарами.

Функции липидов следующие:

1. Структурная. Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.

2. Энергетическая. При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию. Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.

3. Защитная и теплоизоляционная. Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль — способствует плавучести.

4. Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.

5. Регуляторная. Многие гормоны являются производными холестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон). Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

Углеводы

Общая характеристика. Углеводами называют вещества с общей формулой Сn (H2O) m, где п и т могут иметь разные значения. Само название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих вешеств в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы — одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также входят в состав клеток всех других организмов. В животной клетке содержится 1-2% углеводов, в растительных в некоторых случаях – 85-90%.

Выделяют три группы углеводов:

· моносахариды, или простые сахара;

· олигосахариды (греч. oligos — немногочисленный) — соединения, состоящие из 2—10 последовательно соединенных молекул простых Сахаров;

· полисахариды, состоящие более чем из 10 молекул простых Сахаров или их производных.

Моносахариды-это соединения, в основе которых лежит неразветвленная углеродная цепочка, в которой при одном из атомов углерода находится карбонильная группа (С=0), а при всех остальных — по одной гидроксильной группе. В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (С3), гетрозы (С4), пентозы (С5), гексозы (С6), гептозы (С7). Примерами пентоз являются рибоза, дезоксирибоза, гексоз-глюкоза, фруктоза, галактоза.

Моносахариды хорошо растворяются в воде, они сладкие на вкус. В водном растворе моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз — их обычные формы; в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов. Кроме Сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды. При гидролизе олигосахариды образуют несколько молекул простых Сахаров. В олигосахаридах молекулы простых Сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы, например:

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар):

глюкоза + глюкоза = мальтоза;
глюкоза + галактоза - лактоза;
глюкоза + фруктоза = саxароза.

Эти сахара называют также дисахаридами. Мальтоза образуется из крахмала в процессе его расщепления под действием ферментов амилаз. Лактоза содержится только в молоке. Сахароза наиболее распространена в растениях.

По своим свойствам дисахариды близки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды. Это высокомолекулярные (до 10 000 000 Да) биополимеры, состоящие из большого числа мономеров — простых Сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором — гетерополисахариды (гепарин).

Полисахариды могут иметь линейную, неразветвленную структуру (целлюлоза) либо разветвленную (гликоген). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие:

Целлюлоза — линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована 3—10 тыс. остатков P-D-тюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26—80% целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку железы желудочно-кишечного тракта не образуют фермента целлюлазы, расщепляющей целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, так как они придают пище грубую консистенцию, объемность и стимулируют перистальтику кишечника.

Крахмал (у растений) и гликоген (у животных, человека и грибов) являются основными запасными полисахаридами по ряду причин: будучи нерастворимыми в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что важно при длительном нахождении их в живой клетке. Твердое, обезвоженное состояние полисахаридов способствует увеличению полезной массы продукта запаса за счет экономии объема, причем существенно уменьшается вероятность потребления этих продуктов болезнетворными бактериями, грибами и другими микроорганизмами. И наконец, при необходимости запасные полисахариды легко могут быть превращены в простые сахара путем гидролиза.

Хитин образован молекулами pVD-глюкозы, в которой гидроксильная группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин — основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Функции углеводов:

1. Энергетическая. Глюкоза — основной источник энергии, высвобождаемой в клетках живых организмов в ходе клеточного дыхания. Крахмал и гликоген составляют энергетический запас в клетках.

2. Структурная, Целлюлоза входит в состав клеточных оболочек растений; хитин служит структурным компонентом покровов членистоногих и клеточных стенок многих грибов. Некоторые олигосахариды — составная часть цитоплазмати-ческой мембраны клетки (в виде гликопротеинов и гликолипи-дов), образующая гликокаликс.Пентозы участвуют в синтезе нуклеиновых кислот (рибоза входит в состав РНК, дезоксирибоза — в состав ДНК), некоторых коферментов (например, НАД, НАДФ, кофермента А, ФАД), АМФ; принимают участие в фотосинтезе (рибулозо-дифосфат является акцептором С02 в темновой фазе фотосинтеза).

3. Защитная. У животных гепарин препятствует свертыванию крови, у растений камеди и слизи, образующиеся при повреждении тканей, выполняют защитную функцию.

 

Вопросы для закрепления темы:

1.Какова биологическая роль жиров в организме?

2. Каковы основные функции углеводов?

3. Какую роль играют витамины в жизни человека?

4. Что такое авитаминоз?

5.Какие функции выполняют белки в организме?

6. Что такое ферменты?

7. Как подразделяются углеводы?

8. Что такое гормоны? Объясните механизм действия гормонов.

 



Дата добавления: 2021-09-25; просмотров: 302;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.018 сек.