Additional Insights into Power Electronics


There are several striking features of power electronics, the foremost among them being the extensive use of inductors and capacitors. In many applications of power electronics, an inductor may carry a high current at a high frequency. The implications of operating an inductor in this manner are quite a few, such as necessitating the use of litz wire in place of single-stranded or multi-stranded copper wire at frequencies above 50 kHz, using a proper core to limit the losses in the core, and shielding the inductor properly so that the fringing that occurs at the air-gaps in the magnetic path does not lead to electromagnetic interference. Usually the capacitors used in a power electronic application are also stressed. It is typical for a capacitor to be operated I a high frequency with current surges passing through it periodically. This means that the curent rating of the capacitor at the operating frequency should be checked its use. In addition, it may be preferable if the capacitor has self-healing property. Hence an inductor or a capacitor has to be selected or designed with care, taking into account the operating conditions, before its use in a power electronic circuit. In many power electronic circuits, diodes play a crucial role. A normal power diode is usually designed to be operated at 400 Hz or less. Many of the inverter and switch-mode power supply circuits operate at a much higher frequency and these circuits need diodes that turn ON and OFF fast. In addition, it is also desired that the turning-off process of a diode should not create undesirable electrical transients in the circuit. Since there are several types of diodes available, selection of a proper diode is very important for reliable operation of a circuit. Analysis of power electronic circuits tends to be quite complicated, because these circuits rarely operate in steady-state. Traditionally steady-state response refers to the state of a circuit characterized by either a dc response or a sinusoidal response. Most of the power electronic circuits have a periodic response but this response is not usually sinusoidal. Typically, the repetitive or the periodic response contains both a steady-state part due to the forcing function and a transient part due to the poles of the network. Since the responses are nonsinusoidal, harmonic analysis is often necessary. In order to obtain the time response, it may be necessary to resort to the use of a computer program.

 

HOW RADIO WORKS



Дата добавления: 2017-10-04; просмотров: 1082;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.006 сек.