Усиление фундаментов буроинъекционными сваями с электроимпульсным уплотнением бетона и грунтов
Электроимпульсная технология уплотнения бетона буроинъекционных свай основана на передаче кратковременных импульсов большой мощности в теле скважины, заполненной подвижной бетонной или цементно-песчаной смесью. Для создания импульсов используются специальные установки, обеспечивающие повышение напряжения с 220-380 В до 4,0-10 кВ. Электроэнергия повышенного напряжения, проходя через выпрямитель, накапливается в блоке конденсаторов. С помощью специального разрядника - коммутатора накопленная энергия через коаксиальный кабель подается к излучателю, помещенному в свежеуложенную бетонную смесь. Излучатель состоит из двух электродов с фиксированным расстоянием между ними. При подаче напряжения образуется разряд, который сопровождается повышением температуры и гидродинамического давления до 107-108 МПа за период времени 10-4-10-5 с. В результате гидравлического удара образуются сферические волны сжатия, которые через жидкую фазу бетонной смеси распространяются в окружающем грунте, тем самым уплотняя это пространство и расширяя стенки скважины. Одновременно происходит уплотнение мелкозернистой бетонной смеси. Совокупность факторов уплотнения грунта стенок скважины и бетонной смеси дает увеличение несущей способности свай. По данным фирмы «Рита», достигается повышение несущей способности свай в 2 раза, сопротивление грунта под пятой возрастает в 1,3-2,0 раза, а на боковых поверхностях - в 1,2-1,5 раза.
На рис. 6.20 приведены принципиальная схема формирования электрогидравлических импульсов в бетонной смеси и динамика передачи давления на стенки скважин.
Рис. 6.20. Схема формирования электрогидравлических импульсов при устройстве свай
а - общая технологическая схема; б -схема разрядника и механизма уплотнения стенок скважины; в -распределение плотности зоны грунта, примыкающей к скважине; г - распределение пульсации давления в бетонной смеси и грунте; 1 - скважина; 2 -погружная труба с разрядником; 3,4 -генератор импульсного тока; 5 - литая бетонная смесь; 6,7 -разрядник с изолятором; Рmax- плотность грунта после электроимпульсного воздействия; Р0-начальная плотность
Распространение сферических волн через бетонную смесь обеспечивает уплотнение стенок скважины.
Для повышения технологического эффекта целесообразно использовать высокопластичные смеси с добавкой суперпластификатора С-3 в объеме 0,2-0,3 % массы цемента. Меньшая сжимаемость смеси создает предпосылки более эффективной передачи импульсов стенкам скважины.
При этом в силу высокого коэффициента затухания b наблюдается экспоненциальное снижение амплитуды давления пропорционально коэффициенту затухания Pg = P0e-βr,где r - расстояние от источника импульса до исследуемой точки; P0- динамическое давление на стенку скважины.
Таким образом, достигается локальное уширение скважины за счет кратковременного действия динамической нагрузки и повышения плотности грунта.
Зона уплотнения стенок зависит от величины динамического давления и реологических характеристик грунта. В свою очередь, динамическое давление в зоне разряда Pg = f(V,∆,R),где V -подаваемое напряжение; ∆ - зазор между электродами; R - электрическое сопротивление бетонной смеси.
При подаче электроэнергии на электроды излучателя в межэлектродном пространстве создается высокая плотность энергии порядка 1013-1014 Дж/м2. В результате образуется плазма с высокой температурой и давлением до 108-1010 Па. Парогазовая смесь совершает работу по формированию сферической ударной волны, которая распространяется по бетонной смеси, совершая работу по уплотнению грунта начиная с границы раздела «бетон-грунт» (рис. 6.21).
Рис. 6.21. Характер распределения динамического давления в бетонной смеси (1) и грунте (2)
Р0- давление на границе раздела сред; Рст.гр - статическое давление грунта; Рг.б - гидростатическое давление бетонной смеси
К моменту окончания ввода энергии канал разряда развивается в парогазовую полость, продолжая расширяться, что способствует образованию камуфлетного уширения. Когда в полости давление снизится до гидростатического давления бетонной смеси, происходит процесс «схлопывания» полости, а этот объем занимает бетонная смесь. За полный цикл подачи импульса происходит уплотнение грунта на величину ∆r c последующим затуханием волны также по экспоненциальной зависимости, но с другим коэффициентом затухания.
По экспериментальным данным, давление ударной волны в радиусе 1 м от центра разряда составляет 3,56 МПа, а на расстоянии 1,2 м - 1,82 МПа. Это свидетельствует о высоком коэффициенте затухания ударной волны в грунтовых условиях и более высоких давлениях на границе раздела сред.
По данным Г.Н. Гаврилова, при энергии в 20-40 кДж достигается уплотнение грунта на 10-15 % в радиусе до 0,8 м.
Динамический режим пульсации требует учета характеристик грунта, которые определяются путем бурения контрольных скважин с целью определения залегания различных по физико-механическим и реологическим характеристикам грунтовых слоев. Эти данные позволяют осуществлять электрогидравлическую обработку с переменным режимом (энергии) воздействия. Компьютерное управление процессами позволяет получать сваи с заданной несущей способностью.
Технологическая последовательность операций при изготовлении свай состоит в: установке инвентарного кондуктора; бурении скважины и монтаже обсадной трубы; заполнении скважины мелкозернистой литой бетонной смесью подвижностью П5; установке электродной системы в забой скважины и обработке пяты сваи; импульсной обработке ствола сваи по расчетному режиму с дополнением бетонной смеси; погружении арматурного каркаса; демонтаже инвентарного кондуктора; формировании оголовка сваи.
На рис. 6.22 приведена технологическая схема устройства свай.
Рис. 6.22. Технологическая схема устройства свай по разрядно-импульсной технологии
1 - буровой станок; 2 - трансформаторная подстанция; 3 - генератор импульсного тока; 4 - металлическая труба для размещения системы подачи напряжения; 5, 6 - разрядник; 7 - кондуктор; Dn - диаметр уширения пяты; Dу - диаметр уширения по высоте сваи; d1 - диаметр скважины; σ1- σ1-сопротивление слоев грунта сжатию
При производстве работ необходимо определить так называемый отказ, т.е. такое камуфлетное уширение, при котором последующее разрядно-импульсное воздействие не приводит к уширению полости сваи.
Это условие контролируется понижением и стабилизацией уровня бетонной смеси.
Особое место в производстве работ отводится процессу уширения «пяты», что в целом определяет несущую способность сваи.
Методика определения несущей способности свай производится согласно нормативному документу СНиП 2.02.03-85 «Свайные фундаменты».
При расчете свайных фундаментов по предельным состояниям первой группы требуется выполнить расчет по несущей способности грунта основания свай (п. 3.1 СНиП 2.02.03-85).
Несущую способность грунтов основания одиночной сваи в составе фундамента и вне его рассчитывают исходя из условия (п. 3.10 СНиП 2.02.03-85): PCB=Fd/γK, PCB - расчетная нагрузка, передаваемая на сваю; Fd -расчетная несущая способность грунта основания одиночной сваи (несущая способность сваи); gK - коэффициент надежности, принимаемый в соответствии с требованиями СНиП 2.02.03-85.
Несущая способность висячей сваи определяется по зависимости Fd = γс×(γCR×R×A + u∑γcf××fi×li), γс =1 - коэффициент условий работы сваи; γс = 1,3 - коэффициент условий работы грунта под нижним концом сваи (принимается как для сваи с камуфлетным уширением); γcf - коэффициент условий работы грунта на боковой поверхности сваи (при разрядно-импульсной обработке i-го горизонта принимается γcf = 1,3); R -расчетное сопротивление грунта под нижним концом сваи (кПа).
Серия электрических разрядов в зоне скважины образует уширения, которые заполняются бетонной смесью под действием гидростатического давления.
Понижение уровня бетонной смеси равно: ∆h = hнач - hкон.
Расход бетона на заполнение полости равен: Vб = πd2c/4∆h,где dc -диаметр скважины, м.
Приравняв объем полости к расходу бетона, требуемого на ее заполнение, получим диаметр условной полости, равный
Из теории камуфлетных взрывов известно, что отношение величины зоны уплотнения к радиусу образуемой полости не зависит от масштаба взрыва и находится в пределах 3,0-3,5: Dу = (3,0 - 3,5)Dn, Dу - диаметр зоны уплотнения, м; Dn - диаметр условной полости, м. F - площадь опирания сваи, принимаемая равной площади поперечного сечения уширения, получаемая в результате обработки ее забоя по разрядно-импульсной технологии, составляет F = πD2у/4,где Dу - наибольший диаметр, м, разрядно-импульсного уширения; определяется по зависимости где γб = 0,9 - коэффициент, учитывающий потери бетонной смеси и уменьшение объема смеси в формируемом уширении за счет фильтрации воды из растворной части в окружающий грунт; η = ∆h/dc - коэффициент, учитывающий отношение изменения уровня бетонной смеси к диаметру скважины; иi - периметр поперечного сечения ствола сваи на i-м горизонте, м: иi = D∆у, м; σгр - расчетное сопротивление i-го слоя грунта на боковой поверхности сваи, кПа (тс/м2), принимается по СНиП 2.02.03-85; hi -толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м.
Технология усиления фундаментов сваями по разрядно-импульсной технологии
Технологические схемы усиления фундаментов с применением наклонных свай РИТА осуществляются с выполнением работ как со стороны подвального помещения, так и по наружному периметру зданий. Устройство свай производится с наклоном в пределах 5-20° от вертикали. При удовлетворительном состоянии кладки электроимпульсное уплотнение осуществляется за пределами подошвы фундаментов.
Значительное повышение несущей способности достигается путем возведения распределительных железобетонных балок, располагаемых в поперечном сечении, с последующим устройством выносных буроинъекционных свай симметрично оси ленточных фундаментов (рис. 6.23).
Рис. 6.23. Усиление ленточных фундаментов сваями РИТА
а - с внешней стороны бесподвального фундамента; б -двустороннее усиление; в - передача нагрузки на сваи через распределительные балки
Для усиления фундаментов сваями энергия пульсации должна составлять 20-50 кДж с частотой подачи до 60 имп/мин.
Количество свай на 1 мп фундаментов определяется из условия их несущей способности с учетом дополнительных нагрузок от надстраиваемых этажей. Шаг размещения свай оптимизируется не только с техническим, но и с экономическим обоснованием.
Для более полной оценки несущей способности свай производят оценку структуры грунтов, их глубины залегания и физико-механических характеристик. Эти данные получают путем зондирования. Они необходимы для назначения технологических параметров электроимпульсной обработки и компьютерного контроля качества работ.
Для уточнения фактических параметров несущей способности производят испытания контрольных свай, устраиваемых в зоне производства работ. Это обстоятельство позволяет свести до минимума риск снижения их несущей способности с расчетными параметрами.
Технологический эффект от использования электроимпульсной технологии иллюстрируется данными контрольных испытаний буроинъекционных свай без опрессовки, с опрессовкой под давлением 0,4 МПа и свай с электроимпульсным уплотнением (рис. 6.24).
Рис. 6.24. Сопоставительный анализ буроинъекционных свай без опрессовки (1),с опрессовкой под давлением 0,4 МПа (2) и свай с электроимпульсным уплотнением (3), (4)
Двух-трехкратное повышение несущей способности и снижение осадок зарегистрированы для сложных инженерно-геологических условий при реконструкции объектов различного технологического назначения.
Восстановление несущей способности ленточных фундаментов
Технология восстановления несущей способности ленточных фундаментов по разрядно-импульсной технологии состоит в их цементации путем бурения скважин на 2/3 глубины фундамента с последующим заполнением цементным раствором. Разрядно-импульсное устройство мощностью до 4,0 кВ погружается в скважины и производится серия импульсов с последовательным подъемом разрядника и дополнением смеси в скважину. В момент прохождения импульсов создается избыточное гидродинамическое давление, которое способствует заполнению разрушенных швов и отдельных полостей ленточных фундаментов.
Для восстановления бутовой или кирпичной кладки фундаментов энергия электрического разряда принимается в пределах 0,3-1,5 кДж, а частота подачи импульсов 10-150 в минуту. Для цементации зоны «фундамент-грунт» энергия электрического разряда повышается до 5-15 кДж. Воздействие разрядными импульсами производят до полного насыщения цементным раствором кладки, которое визуально оценивается, например, со стороны подвальной части.
На рис. 6.25 приведена принципиальная схема восстановления и усиления фундаментов по данной технологии. Она осуществляется с внешней и внутренней сторон фундамента с шагом размещения скважин 0,5-0,8 м. Образование скважин с внутренней стороны осуществляется легкими бурильными установками, размещаемыми на подвальном перекрытии.
Рис. 6.25. Технологические схемы восстановления и усиления фундаментов цементацией с использованием разрядно-импульсной технологии
а -схемы насыщения цементным раствором швов кладки; б - технологическая последовательность производства работ; в -зоны действия цементации; 1 -фундамент из бутовой кладки; 2 -скважина диаметром 30-40 мм; 3 -зоны проникновения цементного раствора в кладку; 4 -возможное укрепление основания цементацией
Для восстановления несущей способности фундаментов разрабатываются проект производства работ и технологические карты. С учетом степени износа фундаментов назначаются технологические режимы цементации: энергия электрического разряда, частота пульсации, шаг скважин и продолжительность динамического воздействия.
Для оценки технологической эффективности и качества работ осуществляют контрольную отрывку шурфов по периметру здания, визуальную и инструментальную оценки степени заполнения швов цементным раствором, а также монолитности фундаментов в целом.
По результатам обследований составляют акт на скрытые работы.
Для более детальной оценки несущей способности фундаментов производят отбор кернов и их испытания в лабораторных условиях.
Дата добавления: 2021-09-07; просмотров: 370;