АЛЮМИНИЙ И АЛЮМИНИЕВЫЕ СПЛАВЫ
Получение алюминия. Из руд для промышленного получения алюминия используют преимущественно бокситы и нефелины. Химический состав бокситов выражается формулой Na2(K2)0*Al203*2SiO2. Бокситы содержат в своем составе 30-70% глинозема Al2O3, 2-20% кремнезема SiO2 , 2—50% окиси железа Fe203 и 0,1—10% окиси титана TiO2. Производство алюминия состоит из двух основных процессов: получения глинозема Al2O3 из бокситов и восстановления металлического алюминия электролизом из раствора глинозема в расплавленном криолите (Na3AlF6). Электролитом служит криолит с добавлением 8—10% глинозема, а также A1F3 и NaF. Образующийся в результате электролиза жидкий алюминий собирается на дне ванны подслоем электролита. Его называют алюминием-сырцом. Алюминий-сырец содержит металлические (Fe, Си, Zn и др.) и неметаллические (С, Al2O3, Si и др.) примеси, а также газы — кислород, водород, окись и двуокись углерода и др. Эти примеси удаляют, например, хлорированием (продувкой хлором) жидкого алюминия-сырца в ковше. Образующийся при этом парообразный хлористый алюминий А1С13, проходя через расплавленный алюминий, обволакивает пузырьками частицы примесей и выносит их вместе с газами, растворенными в алюминии. После рафинирования хлором алюминий отливают в слитки и направляют потребителям.
Первичный алюминий делят натри группы: алюминий особой чистоты (маркаА999), высокой чистоты (четыре марки) и технической чистоты. Предусмотрено восемь марок, допускающих содержание примесей 0,15-1%. Название марки указывает ее чистоту. Например, марка А8 обозначает, что в металле содержится 99,8% алюминия, а в марке А99—99,99% алюминия. Алюминий технической чистоты получают в электролизных ваннах. Путем электролитического рафинирования алюминия-сырца получают алюминий марок высокой чистоты.
Алюминий - легкий металл серебристо-белого цвета с высокой электро- и теплопроводностью; плотность его 2700кг/м^3, температура плавления в зависимости от чистоты колеблется в пределах 660—667°С. В отожженном состоянии алюминий имеет малую прочность (σв=80—100 МПа), низкую твердость (НВ 20-40), но обладает высокой пластичностью (β=35-40%).
Алюминий хорошо обрабатывается давлением, сваривается, но плохо поддается резанию. Имеет высокую стойкость против атмосферной коррозии и в пресной воде. На воздухе алюминий быстро окисляется, покрываясь тонкой плотной пленкой окиси, которая не пропускает кислород в толщу металла, что и обеспечивает его защиту от коррозии.
В качестве конструкционных материалов алюминий широко применяют в виде сплавов с другими металлами и неметаллами (медь, марганец, магний, кремний, железо, никель, титан, бериллий и др.). Алюминиевые сплавы сочетают в себе лучшие свойства чистого алюминия и . повышенные прочностные характеристики легирующих добавок. Так, железо, никель, титан повышают жаропрочность алюминиевых сплавов. Медь, марганец, магний обеспечивают упрочняющую термообработку алюминиевых сплавов. В результате легирования и термической обработки удается в несколько раз повысить прочность (σВ с 100 до 500 МПа) и твердость (НВ с 20 до 150) алюминия. Все сплавы алюминия подразделяют на деформируемые и литейные.
Деформируемые алюминиевые сплавы. Деформируемые алюминиевые сплавы применяют для получения листов, ленты, фасонных профилей, проволоки и различных деталей штамповкой, прессованием, ковкой. В зависимости от химического состава деформируемые алюминиевые сплавы делят на 7 групп; содержат 2—3 и более легирующих компонента в количестве 0,2—4% каждого. Например, сплавы алюминия с магнием и марганцем; алюминия с медью, магнием, марганцем и др.
Деформируемые сплавы разделяют на сплавы, упрочняемые и не упрочняемые термической обработкой. Деформируемые сплавы, подвергаемые механической и термической обработке, имеют буквенные обозначения, указывающие на характер обработки (см. примечания к табл. 9).
Термически не упрочняемые сплавы — это сплавы алюминия с марганцем (Амц) и алюминия с магнием и марганцем (Амг). Он и обладают умеренной прочностью, высокой коррозионной стойкостью, хорошей свариваемостью и пластичностью (табл. 9).
Термически упрочняемые сплавы (см. табл. 9) приобретают высокие механические свойства и хорошую сопротивляемость коррозии только в результате термической обработки. Наиболее распространены сплавы алюминия с медью, магнием, марганцем (дюралюмины) и алюминия с медью, магнием, марганцем и цинком (сплавы высокой прочности).
Дюралюмины маркируют буквой Д, после которой стоит цифра, обозначающая условный номер сплава. Термическая обработка дюралюминов состоит в закалке, естественном или искусственном старении. Для закалки сплавы нагревают до 500°С и охлаждают в воде. Естественное старение производят при комнатной температуре в течение 5—7 сут.
Табл. 9.
Деформируемые алюминиевые сплавы
Марка | Толщина листов, мм | Предел прочнос- ти растя- Жения σв Мпа | Относи- тельное удлинение Δв. % | Назначение |
Термически не упрочняемые | ||||
АМцМ АМг2М АМгЗН АМгЗМ | 0,5-10 0,5-10 0,5-10 0,8-10 | 190-200 | 18-22 16-18 3-4 | Малонагруженные детали, сварные и клепаные конструкции, детали, получаемые глубокой вытяжкой |
Средненагруженные детали сварных и клепаных конструкций, конструкций. с высокой коррозионной стойкостью | ||||
АМг5М | 0,8-10 | |||
Термически упрочняемые | ||||
Д1А | 5-10,5 | Детали и конструкции средней прочности | ||
Д16А Д16АТ | 5-10,5 0,5-10 | Детали и конструкции повышенной прочности, работающие при переменных нагрузках | ||
В95А | 5-10,5 | Детали нагружаемых конструкций, работающие при температуре до 100"С |
Примечание: 1. В зависимости от состояния поставки в обозначение марки добавляют следующие буквы: М — отожженные, Н — нагартованные, Т — закаленные и естественно состаренные. 2. Листы из сплавов Д1, Д16, В95 с нормальной плакировкой дополнительно маркируют буквой А
Искусственное старение проводят при 150-180°С в течение 2-4 ч. При одинаковой прочности дюралюмины, подвергнутые естественному старению, более пластичны и коррозионностойки, чем подвергнутые искусственному старению. Особенностью нагрева алюминиевых сплавов при закалке является строгое поддержание температуры (±5°С), чтобы не допустить пережога и достичь наибольшего эффекта термической обработки.
Дюралюмины не обладают необходимой коррозионной стойкостью, поэтому их подвергают плакированию. Дюралюмины выпускают в виде листов, прессованных и катаных профилей, прутков, труб. Особенно широко применяют дюралюмины в авиационной промышленности и строительстве.
Дата добавления: 2017-06-13; просмотров: 1562;