ТИТАН, МАГНИЙ И ИХ СПЛАВЫ
Получение титана. Титан — серебристо-белый металл с высокой механической прочностью и высокой коррозионной и химической стойкостью. Для производства титана используют рутил, ильменит, титанит и другие руды, содержащие 10—40% двуокиси титана TiO2. После обогащения концентрат титановых руд содержит до 65% TiO2 . ТiO2 и сопутствующие окислы железа разделяют восстановительной плавкой. В процессе плавки окислы железа и титана восстанавливаются, в результате чего получают чугун и титановый шлак, в котором содержится до 80—90% TiO2. Титановый шлак хлорируют, в результате чего титан соединяется с хлором в четыреххлористый титан TiCl4. Затем четыреххлористый титан нагревают в замкнутой реторте при температуре 950—1000°С в среде инертного газа (аргон) вместе с твердым магнием. Магний отнимает хлор, превращаясь в жидкий MgCl2, а твердые частицы восстановленного титана спекаются в пористую массу, образуя титановую губку. Путем сложных процессов рафинирования и переплава их титановой губки получают чистый титан. Технически чистый титан содержит 99,2-99,65% титана.
Свойства и применение титана. Прочность технически чистого титана зависит от степени его чистоты и соответствует прочности обычных конструкционных сталей. По коррозионной стойкости титан превосходит даже высоколегированные нержавеющие стали.
Для получения сплавов титана с заданными механическими свойствами его легируют алюминием, молибденом, хромом и другими элементами. Главное преимущество титана и его сплавов заключается в сочетании высоких механических свойств (σв≥ 1500 МПа; δ=10-15%) и коррозионной стойкости с малой плотностью.
Алюминий повышает жаропрочность и механическую прочность титана. Ванадий, марганец, молибден и хром повышают жаропрочность титановых сплавов. Сплавы хорошо поддаются горячей и холодной
Табл. 13.
Механические свойства титановых сплавов
Марка | Термическая обработка | Предел прочности σв, МПа | Относительное удлинение δв,% | Твердость, НВ |
ВТ5 | Отжиг при 750°С | 750-900 | 10-15 | 240-300 |
ВТ8 | Закалка 900-950°С + старение при 500°С | 1000-1150 | 3-6 | 310-350 |
ВТ 14 | Закалка 870°С + старение при 500°С | 1150-1400 | 6-10 | 340-370 |
обработке давлением, обработке резанием, имеют удовлетворительные литейные свойства, хорошо свариваются в среде инертных газов. Сплавы удовлетворительно работают при температурах до 350—500°С.
По технологическому назначению титановые сплавы делят на деформируемые и литейные, а по прочности - натри группы: низкой (σв =300-700 МПа), средней (σв=700-1000 МПа) и высокой (σв более 1000 МПа) прочности . К первой группе относят сплавы под маркой ВТ1, ко второй - ВТЗ, ВТ4, ВТ5 и др., к третьей - ВТ6, ВТ14, ВТ15(после закалки и старения).
Для литья применяют сплавы, аналогичные по составу деформируемым сплавам (ВТ5Л, ВТ14Л), а также специальные литейные сплавы. Литейные сплавы имеют более низкие механические свойства, чем соответствующие деформируемые. Титан и его сплавы, обработанные давлением, выпускают в виде прутков, листов и слитков. Титановые сплавы (табл. 13) применяют в авиационной и химической промышленности.
Получение магния. Магний - самый легкий из технических цветных металлов, его плотность 1740 кг/м3, температура плавления 650°С. Технически чистый магний - непрочный металл с низкой тепло- и электропроводностью. Для улучшения прочностных свойств в магний добавляют алюминий, кремний, марганец, тори и, церий, цинк, цирконий и подвергают термообработке.
Для производства магния используют преимущественно карналлит
(MgCl2* КС1*6Н20), магнезит (MgCO3), доломит (CaCO3-MgCO3) и отходы ряда производств, например титанового. Карналлит подвергают обогащению, в процессе которого отделяют КС1 и нерастворимые примеси путем перевода в водный MgC12 и КС1. После получения в вакуумкристаллизаторах искусственного карналлита его обезвоживают и электролитическим путем получают из него магний, который затем подвергают рафинированию. Технически чистый магний (первичный) содержит 99,8-99,9% магния. Маркировка и химический состав магниевых сплавов для фасонного литья и, слитков, предназначенных для обработки давлением, регламентируются стандартами.
Свойства и применение магния. В зависимости от способа получения изделий магниевые сплавы делят на литейные и деформируемые.
Литейные магниевые сплавы применяют для изготовления деталей литьем. Их маркируют буквами МЛ и цифрами, обозначающими порядковый номер сплава, например МЛ5. Отливки из магниевых сплавов иногда подвергают закалке с последующим старением. Некоторые сплавы МЛ применяют для изготовления высоконагруженных деталей в авиационной промышленности: картеры, корпуса приборов, фермы шасси и т.п.
Деформируемые магниевые сплавы предназначены для изготовления полуфабрикатов (листов, прутков, профилей) обработкой давлением. Их маркируют буквами МА и цифрами, обозначающими порядковый номер сплава, например МА5. Сплавы МА применяют для изготовления различных деталей в авиационной промышленности. Ввиду низкой коррозионной стойкости магниевых сплавов изделия и детали из них подвергают оксидированию с последующим нанесением лакокрасочных покрытий.
Дата добавления: 2017-06-13; просмотров: 1350;