ТИТАН, МАГНИЙ И ИХ СПЛАВЫ


Получение титана. Титан — серебристо-белый металл с высокой ме­ханической прочностью и высокой коррозионной и химической стой­костью. Для производства титана используют рутил, ильменит, тита­нит и другие руды, содержащие 10—40% двуокиси титана TiO2. После обогащения концентрат титановых руд содержит до 65% TiO2 . ТiO2 и сопутствующие окислы железа разделяют восстановительной плавкой. В процессе плавки окислы железа и титана восстанавливаются, в резуль­тате чего получают чугун и титановый шлак, в котором содержится до 80—90% TiO2. Титановый шлак хлорируют, в результате чего титан со­единяется с хлором в четыреххлористый титан TiCl4. Затем четыреххло­ристый титан нагревают в замкнутой реторте при температуре 950—1000°С в среде инертного газа (аргон) вместе с твердым магнием. Магний от­нимает хлор, превращаясь в жидкий MgCl2, а твердые частицы восста­новленного титана спекаются в пористую массу, образуя титановую губку. Путем сложных процессов рафинирования и переплава их тита­новой губки получают чистый титан. Технически чистый титан содер­жит 99,2-99,65% титана.

Свойства и применение титана. Прочность технически чистого титана зависит от степени его чистоты и соответствует прочности обычных кон­струкционных сталей. По коррозионной стойкости титан превосходит даже высоколегированные нержавеющие стали.

Для получения сплавов титана с заданными механическими свойства­ми его легируют алюминием, молибденом, хромом и другими элемента­ми. Главное преимущество титана и его сплавов заключается в сочета­нии высоких механических свойств (σв≥ 1500 МПа; δ=10-15%) и корро­зионной стойкости с малой плотностью.

Алюминий повышает жаропрочность и механическую прочность ти­тана. Ванадий, марганец, молибден и хром повышают жаропрочность титановых сплавов. Сплавы хорошо поддаются горячей и холодной

 

Табл. 13.

Механические свойства титановых сплавов

Марка   Термическая обработка   Предел прочности σв, МПа   Относительное удлинение δв,%     Твер­дость, НВ  
ВТ5   Отжиг при 750°С   750-900   10-15   240-300  
ВТ8   Закалка 900-950°С + старение при 500°С   1000-1150   3-6   310-350  
ВТ 14   Закалка 870°С + старение при 500°С   1150-1400   6-10   340-370  

 

об­работке давлением, обработке резанием, имеют удовлетворительные ли­тейные свойства, хорошо свариваются в среде инертных газов. Сплавы удовлетворительно работают при температурах до 350—500°С.

По технологическому назначению титановые сплавы делят на деформируемые и литейные, а по прочности - натри группы: низкой (σв =300-700 МПа), средней (σв=700-1000 МПа) и высокой (σв более 1000 МПа) прочности . К первой группе относят сплавы под маркой ВТ1, ко второй - ВТЗ, ВТ4, ВТ5 и др., к третьей - ВТ6, ВТ14, ВТ15(после закалки и старения).

Для литья применяют сплавы, аналогичные по составу деформируемым сплавам (ВТ5Л, ВТ14Л), а также специальные литейные сплавы. Литей­ные сплавы имеют более низкие механические свойства, чем соответству­ющие деформируемые. Титан и его сплавы, обработанные давлением, выпускают в виде прутков, листов и слитков. Титановые сплавы (табл. 13) применяют в авиационной и химической промышленности.

Получение магния. Магний - самый легкий из технических цветных металлов, его плотность 1740 кг/м3, температура плавления 650°С. Тех­нически чистый магний - непрочный металл с низкой тепло- и электро­проводностью. Для улучшения прочностных свойств в магний добавля­ют алюминий, кремний, марганец, тори и, церий, цинк, цирконий и под­вергают термообработке.

Для производства магния используют преимущественно карналлит

(MgCl2* КС1*6Н20), магнезит (MgCO3), доломит (CaCO3-MgCO3) и отходы ряда производств, например титанового. Карналлит подвергают обога­щению, в процессе которого отделяют КС1 и нерастворимые примеси путем перевода в водный MgC12 и КС1. После получения в вакуумкристаллизаторах искусственного карналлита его обезвоживают и электролитическим путем получают из него магний, который затем подвергают рафинированию. Технически чистый магний (первичный) содержит 99,8-99,9% магния. Маркировка и химический состав магниевых спла­вов для фасонного литья и, слитков, предназначенных для обработки давлением, регламентируются стандартами.

Свойства и применение магния. В зависимости от способа получения изделий магниевые сплавы делят на литейные и деформируемые.

Литейные магниевые сплавы применяют для изготовления деталей ли­тьем. Их маркируют буквами МЛ и цифрами, обозначающими поряд­ковый номер сплава, например МЛ5. Отливки из магниевых сплавов иногда подвергают закалке с последующим старением. Некоторые сплавы МЛ применяют для изготовления высоконагруженных деталей в авиационной промышленности: картеры, корпуса приборов, фермы шасси и т.п.

Деформируемые магниевые сплавы предназначены для изготовления полуфабрикатов (листов, прутков, профилей) обработкой давлением. Их маркируют буквами МА и цифрами, обозначающими порядковый номер сплава, например МА5. Сплавы МА применяют для изготовления различных деталей в авиационной промышленности. Ввиду низкой кор­розионной стойкости магниевых сплавов изделия и детали из них под­вергают оксидированию с последующим нанесением лакокрасочных покрытий.

 



Дата добавления: 2017-06-13; просмотров: 1350;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.