Лекция 9. Общие сведения о плавке во взвешенном состоянии
План лекции:
1. Основные процессы, протекающие в процессе плавки во взвешенном состоянии
2. Плавка во взвешенном состоянии в атмосфере технологического кислорода
3. Достоинства и недостатки процесса плавки во взвешенном состоянии
Из основных разновидностей плавок во взвешенном состоянии плавка на подогретом дутье (финская плавка) является наиболее отработанным технологически и аппаратурно-автогенным процессом. Этот вид плавки в промышленном масштабе был впервые осуществлен в 1949 г. Финской фирмой «Оutocumpu» на заводе «Харьявалта». В настоящее время эту технологию используют более 30 заводов во всем мире для переработки медных, никелевых и пиритных концентратов.
Печь для плавки во взвешенном состоянии включает в себя три основных узла:
- вертикальную цилиндрическую плавильную камеру (шахту);
- горизонтальную отстойную зону для разделения шлака и штейна;
- газоход (аптейк) с котлом утилизатором.
Плавку осуществляют на подогретом от 200 до 900 – 10000 С воздушком дутье или на дутье, обогащенном кислородом до 30 – 50 %. Используют и комбинированное дутье.
На своде шахты установлены шихтовые горелки, обеспечивающие горение сульфидной шихты в вертикальном факеле. Перед подачей в печь шихту подсушивают в барабанных и трубчатых сушилках до влажности 0,2%.
Шихтно-воздушная смесь из горелки поступает в раскаленное пространство плавильной шахты, где сульфиды воспламеняются. За время падения сульфидные частицы успевают в должной степени окислиться, а легкоплавкие сульфиды и железистые силикаты – расплавиться.
Процесс плавления начинается с прогревания частиц, которые при малых размерах достаточно нагреваются до температур, равных 550 – 6500 С. При этих температурах начинают интенсивно протекать реакции диссоциации высших сульфидов, идущие с поглощением теплоты.
2FeS2 →2FeS + S2
4CuFeS2 →2Cu2 S + 2FeS + S2
4CuS→2Cu2 S + S2
Бурно протекающие эндотермические реакции препятствуют прогреву частиц, и пока не удалится избыточная сера, температура частиц существенно не повысится. Горит на этой стадии только элементарная сера по реакции:
S2 + 2O2 =2SO2
Быстрое окисление низших сульфидов и главным образом FeS по реакции:
2FeS + 3O2 + SiO2 =2FeO*SiO2 + 2SO2
Начинается после практически полной диссоциации высших сульфидов.
Окисление сульфидов сопровождается образованием большого количества магнетита. Переокисление железа зависит от степени десульфуризации – с получением богатых штейнов большая часть железа переходит в форму магнетита.
Капли жидкой фазы, образующиеся в факеле, попадают на поверхность шлакового расплава в отстойной камере, а раскаленные газы – в газоход, отдавая при этом часть тепла расплаву в отстойнике. Температура в реакционной шахте 1350 – 1400 0 С, в отстойнике 1250 – 1300 0 С.
Продолжительность нахождения частицы во взвешенном состоянии и степень её окисления и плавления учитывают при определении размеров шахты. Диаметр шахты изменяется от 3 до 5,5 м., высота от 7,5 до 12м. Отстойная зона имеет ширину от 3,5 – 10 м., длину от 12 до 32 м. Размеры отстойной зоны рассчитывают исходя из пребывания в ней шлака в течении 5-7 ч.
Высота аптейка достигает 20 м. над уровнем расплава, что обусловлено необходимостью восстановления серы в газах.
При плавке получают штейн с содержанием меди 50 – 60 %, шлаки содержащие 0,7 – 2 % меди и газы (14 – 16 % SO2), используемые для производства серной кислоты или элементарной серы.
Шлаки подвергают обеднением флотацией, электроплавкой или обработкой пиритом. Производительность печей достигает 1500 т/сут. Шихты или 8 – 10 т*(м2 *сут).
Вся печь выполнена из магнезитового кирпича. Футеровка плавильной камеры и аптейка заключены в металлический кожух из листовой стали. В кладку всех элементов печи заложено большое количество водоохлаждаемых кисонов. В боковые стены отстойной камеры установлены две медные водоохлаждаемые плиты с отверстиями для выпуски шлака, а в передней торцевой стене – чугунные шпуры для выпуска штейна.
Плавку осуществляют на подогретом от 200 до 900 – 1000 0 С воздушном дутье или на дутье, обогащенном кислородом до 30 – 50 %. Используют и комбинированное дутье.
Конструкции печи взвешенной плавки на подогретом дутье на всех заводах одинаковы, кроме завода «Тамано» (Япония). Печь этого завода оснащена в отстойной камере электродами для перегрева шлака и его обеднения и смещенным в результате этого трубчатым газоходом.
Плавка во взвешенном состоянии в атмосфере технологического кислорода
Отличительной особенностью плавки во взвешенном состоянии на кислородном дутье является использование для её осуществления печей с горизонтальным факелом. Это обусловлено высокой скоростью окисления сульфидов в чистом кислороде и относительно низкой скоростью газовых потоков в печи в следствии небольшого объема образующихся технологических газов.
Кислородно-взвешенная (кислородно-факельная) плавка (КФП) применялась только на двух заводах в мире – в Канаде на заводе «Коппер – Клиф» и на медном заводе в Алмалыке (Узбекистан).
Печь для плавки во взвешенном состоянии на кислородном дутье (96 – 98 %) представляет собой плавильный агрегат с горизонтальным рабочим пространством с горелками для сжигания сульфидов, установленными на обоих торцах печи и центральным отводом газов.
Предварительно высушенная до содержания влаги менее 0,5 % шихта подается в струю кислорода горелками на одной из торцевых стен. В факеле печи протекают реакции диссоциации высших сульфидов:
2CuFeS2 →Cu2 S + 2FeS + 1/2S2
FeS2 →FeS + 1/2S2
3NiS→Ni3 S2 + 1/2S2
S + O2 →SO2
и реакции окисления:
2FeS + 3O3 + SiO2 =2FeO*SiO2 + 2SO2
FeS + 3/2O2 =FeO + SO2
3FeO + 1/2O2 =Fe3 O4
Cu2 S + O2 = Cu2 O + SO2
MeS + O2 =MeO + SO2
Восстановления магнетита сульфидами происходит по реакции:
Fe3 O4 + FeS + 2SiO2 ⇄2 (2FeO*SiO2 ) + SO2
В противоположной стороне печи установлены для факельного сжигания в кислороде пирротинового или пиритного концентрата. В этом факеле образуются капли бедного по содержанию меди сульфидного расплава, служащего для промывки шлака перед выпуском с целью обеднения.
Штейн по мере накопления периодически выпускается через шпур, расположенный на одной из боковых стен.
Выпуск шлака осуществляется со стороны обеднительного торца. Отходящие газы, содержащие до 80% SO2 , направляются на химическое производство.
При сжигании сульфидов в чистом кислороде в факеле развивается высокая температура 1550 – 16000 С. Для отвода избыточного тепла и защиты стен и свода от разрушения, кладку печи охлаждают, с помощью кессонов.
При высоких температурах факела в атмосфере технического кислорода горение сульфидов протекает очень быстро. И уже на расстоянии 0,6 – 1 м. от сопла, кислород полностью расходуется и горение заканчивается. Поэтому скорость горения сульфидов не влияет на конечную производительность.
Процесс КФП отличается высокой десульфуризацией, достигающей 75 %. Это позволяет получать очень богатые штейны, содержащие до 70 % меди.
Принципиальное единство технологических основ двух разновидностей плавки во взвешенном состоянии порождает общность их достоинств и недостатков.
Достоинства:
1. Использование тепла сжигания сульфидов;
2. Высокое извлечение серы в газы (70 – 80 %);
3. Богатые по содержанию SO2 газы;
4. Высокая удельная производительность агрегата;
5. Возможность полной автоматизации процесса.
Недостатки:
1. Высокое содержание меди в шлаках (до 2 %);
2. производительность процесса вследствие медленной скорости штейнообразования и шлакообразования и разделения фаз в отстойной зоне, низка и затраты на подготовку шихты высокие.
Контрольные вопросы:
1. Объяснить основные процессы, протекающие в процессе плавки во взвешенном состоянии
2. Рассказать плавку во взвешенном состоянии в атмосфере технологического кислорода
3. Показать достоинства и недостатки процесса плавки во взвешенном состоянии
Дата добавления: 2017-06-13; просмотров: 2515;