Постановка задачи интерполяции


На интервале заданы точки , ; , и значения неизвестной функции в этих точках , . Требуется найти функцию , принимающую в точках те же значения . Точки будем называть узлами интерполяции, а условия условиями интерполяции. При этом будем искать только на отрезке . Если необходимо найти функцию вне отрезка, то такая задача называется задачей экстраполяции. Мы будем рассматривать только задачи интерполяции.

Поставленная задача имеет много решений, т.к. через заданные точки , ,можно провести бесконечно много кривых, каждая из которых будет графиком функции, для которой выполнены все условия интерполяции. Для практики важен случай аппроксимации функции многочленами, т.е. , где – постоянные коэффициенты.

Все методы интерполяции можно разделить на локальные и глобальные. В случае локальной интерполяции на каждом интервале строится отдельный полином. В случае глобальной интерполяции отыскивается единый полином на всем интервале . При этом искомый полином называется интерполяционный полиномом.



Дата добавления: 2021-09-07; просмотров: 305;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.