Циклы парогазовых установок
Возможности повышения тепловой экономичности циклов паротурбинной установки практически исчерпаны, коэффициент полезного действия современных тепловых электростанций использующих только энергию пара не превышает 35 %.
Повышение КПД ТЭЦ в настоящее время связывают с применением бинарных циклов, в которых паротурбинный цикл объединяют с различными высокотемпературными циклами, например, ГТУ, МГД – установки и другие.
Если сравнить цикл Ренкина для перегретого пара с циклом Карно, для равного температурного интервала, то видно, что заполнение верхней части Тs- диаграммы у цикла Ренкина будет невелико из-за низкой температуры насыщения, при которой образуется пар в котле (см. рис. 4.10). Соответственно термический КПД будет меньше, чем в цикле Карно.
Увеличить заполнение верхней части диаграммы можно достигнуть применением парогазового цикла, использующего два рабочих тела: для высоких температур применяют продукты сгорания топлива, а для низких температур – вода, превращённая в пар. Соответственно используют газовую и паровую турбину.
Объединение газовой и паровой турбин в составе комбинированных парогазовых установок осуществляют различными способами, при этом получаются различные тепловые схемы, разные состав оборудования и основные характеристики работы.
Рис. 4.10. Сравнение цикла Ренкина на перегретом паре с циклом Карно
Существуют следующие схемы парогазовых установок, получивших наибольшее распространение в мировой энергетике.
Парогазовые установки с котлами полного горения (ПГУПГ), в которых при работе в парогазовом режиме выхлопные газы газотурбинного агрегата (компрессор-камера сгорания – газовая турбина) поступают к горелкам парового котла. Полученный в котле пар направляют в паровую турбину. Особенностью этой схемы является автономная работа парогазовой установки по паротурбинному циклу, при остановке газотурбинного агрегата, или автономная работа только газотурбинного агрегата.
Парогазовые установки с высоконапорным парогенератором (ПГУВ), в тепловой схеме которых между компрессором и газовой турбиной установлен паровой котел, совмещающий функции камеры сгорания и парогенератора. Также котлы называют высоконапорными парогенераторами, работающими при повышенном избыточном давлении в зонах горения топлива и теплообмена около 1,0…2,0 МПа. Осуществление такого рабочего процесса приводит к интенсификации и значительному сокращению поверхностей нагрева. Схема такой парогазовой установки (ПГУВ) приведена на рис. 4.11.
На этом рисунке представлены: 1 – камера сгорания; 2 – парогенератор; 3 – пароперегреватель; 4 – воздушный компрессор; 5 – газовая турбина, которая соединена с электрогенератором 6; 7 – паровая турбина, которая приводит в движение электрогенератор 8; 9 – конденсатор; 10 – конденсатный насос; 11 – противоточный газовый подогреватель конденсата.
Рис. 4.11
Воздух, сжатый в компрессоре 4, подается в камеру сгорания 1, работающую на жидком или газообразном топливе, сжигаемом под давлением. Продукты сгорания топлива, охладившись до приемлемой температуры за счет отдачи теплоты парогенератору 2, из камеры сгорания 1 поступают в газовую турбину 5, проходя через нее, расширяются до атмосферного давления. После выхода из турбины они поступают в противоточный газовый подогреватель 11, где охладившись за счет отдачи теплоты конденсату, удаляются в атмосферу.
Пар, полученный в парогенераторе 2, перегревается в пароперегревателе 3 и подается в паровую турбину 7, после выхода из нее направляется в конденсатор 10, где он полностью превращается в конденсат, который затем попадает в противоточный газовый подогреватель 11 и там нагревается за счет теплоты отработавших газов до температуры насыщения. После газового подогревателя конденсат в качестве питательной воды поступает в парогенератор 2.
Термодинамический цикл описанной парогазовой установки представлен на hs – диаграмме (см. рис. 4.12). Как видно из этой диаграммы, он состоит из двух циклов: газового (1-2-3-4-1) и парового (5-6-7-8-9-10-5).
При анализе работы установки следует подчеркнуть, что расход горячих газов, поступающих в газовую турбину, и расход свежего пара, поступающего в паровую турбину, различны. Обозначим кратность расхода газов через m (расход газов в килограммах на один килограмм пара).
Рис. 4.12
На этой диаграмме характерны следующие процессы:
- 1-2 – адиабатное сжатие воздуха в компрессоре 4; при этом затрачивается техническая работа на привод компрессора 4 ;
- 2-3 – подвод теплоты в камере сгорания 1 за счет горения топлива, она равна ;
- 3-4 – адиабатное расширение газов в турбине 5, при этом совершается полезная работа газового цикла ;
- 4-1 – изобарный отвод теплоты отработавших газов в противоточном газовом подогревателе 11 - , которая передается потоку конденсата;
- 8-9 – изобарный подвод теплоты отработавших газов в подогревателе 11 потоку конденсата, которая численно равна ;
- 9-10 – изобарный подвод теплоты конденсату в парогенераторе 2 - ;
- 10-5 – изобарный подвод теплоты пару в пароперегревателе 3 ;
- 5-6 – адиабатное расширение пара в паровой турбине, сопровождающееся совершением полезной работы парового цикла ;
- 6-7 – изобарный отвод теплоты в конденсаторе 9 ;
- 7-8 – адиабатное сжатие конденсата насосом 10, при этом затрачивается техническая работа на привод насоса .
Составим уравнение теплового баланса при теплообмене между потоками газов и конденсата в противоточном газовом подогревателе 11. Очевидно, что в этом случае имеет место условие
.
Из последнего выражения определяется кратность расхода газов:
. (4.42)
Работа парогазового цикла слагается из работы парового цикла
, (4.43)
и работы газового цикла
. (4.44)
Теплота, затрачиваемая на весь цикл, состоит из двух частей:
- в паровом цикле
; (4.45)
- в газовом цикле
. (4.46)
Тогда термический КПД для парогазового цикла определится из выражения
. (4.47)
Парогазовые установки с котлами - утилизаторами (ПГУКУ), их отличие от установок с котлами полного горения состоит в том, что котлы утилизаторы не обеспечивают автономной работы паротурбинной части установки.
В процессе работы выхлопные газы газотурбинного агрегата поступают в котел-утилизатор, который имеет секции высокого давления для выработки пара для паровой турбины и секции низкого давления для выработки пара низкого давления и подогрева конденсата паровой турбины. В составе такой установки используют несколько газотурбинных агрегатов и котлов-утилизаторов, параметры пара составляют: давление 11 МПа и температура 540 оС.
Парогазовые установки с подогревателями питательной воды (ПГУПВ), которые создаются путем пристраивания газотурбинного агрегата и газоводяного теплообменника к действующим паротурбинным блокам.
Газоводяной теплообменник устанавливается на выхлопе газовой турбины, предназначен для подогрева конденсата и питательной воды паротурбинной установки. Цикл ПГУПВ также является частично бинарным комбинированным циклом, позволяет получить соответствующее увеличение КПД и мощности.
Использование в энергетике парогазовых установок позволяет получить прирост мощности до 20 – 30 % и увеличить КПД цикла до 40…50 %.
Дата добавления: 2021-07-22; просмотров: 497;