Геоинформационные ИТ
В середине 1980-х годов появились ИТ, которые позволяли организовать в режиме оnline работу транснациональных корпораций, находящихся на разных континентах, - развивающиеся ИКТ обеспечивали практически мгновенную связь и доставку информации для анализа и принятия делового решения, реализуя известный принцип "7х24" ("7 дней в неделю, 24 часа в сутки"). Значительную часть этой информации практически в любой сфере деятельности составляют рисунки, карты, планы, схемы и пояснительные тексты. В этой связи появилась необходимость представлять географическую и сопутствующую информацию в удобном графическом виде, совмещая на экране монитора несколько листов сканированного изображения карты.
Быстрое развитие специализированных систем и технологий, получивших название географических ИС - ГИС (Geographical Information Systems - GIS), позволило к концу ХХ века успешно решать такие задачи. ГИС-технологии получили широкое распространение и применение в науке, технике, бизнесе. Координатно-временная привязка объектов используется в геодезии, картографии, геологии, мореходном деле. Обработка и сведение в единую систему фотографических снимков из космоса в научных и военных целях, обработка данных геофизики и геодинамики, использование в народном хозяйстве (составление городских, региональных и федеральных земельных кадастров) и многое другое производятся с применением ГИС-технологий.
ГИС-технологии - это, прежде всего, компьютерные технологии и системы, позволяющие эффективно работать с динамическими данными о пространственно-распределенных объектах, дополняя их наглядностью представления и возможностью строить модели и решать задачи пространственно-временного анализа. ГИС, как и любая ИС, снабженная средствами сбора и обработки данных, дает возможность накапливать и анализировать подобную информацию, оперативно находить и обрабатывать нужные географические сведения и отображать их в удобном для пользователя виде.
Географические пространственно-распределенные данные означают информацию, которая идентифицирует географическое местоположение и свойства естественных или искусственно созданных объектов, а также их границ на земле, над и под землей, на воде, над и под водой, в космическом пространстве. Эта информация может быть получена с помощью дистанционного зондирования, картографирования и различных видов съемок, включая съемки из космоса. Географические данные описывают:
· географическое пространственное положение физических или смоделированных объектов представляется 2-х мерными (координаты X,Y на плоскости), 3-х мерными (широта, долгота, высота над уровнем геоида) и 4-х мерными координатами (широта, долгота, высота над уровнем геоида, время в секундах, средних сутках, среднем солнечном годе) в системе координат, отнесенной к среднему полюсу Земли и положению среднего экватора;
· свойства объектов или моделей могут содержать информацию, которая не указывает явно на пространственную ориентацию и является описательной, - тем не менее такая информация является важной и она также включается в географические данные;
· пространственные отношения определяют взаимное расположение объектов или моделей - например, положение объекта А по отношению к объекту В на плоскости, в пространстве или во времени, движение А относительно В, вложенность А в В и т.д.;
· временные параметры могут характеризовать как взаимное отношение объектов (моделей), так и жизненный цикл географических данных.
В ГИС в целом выполняется пять основных функциональных процедур с данными: ввод, манипулирование, хранение, структурирование и управление, запрос и анализ, визуализация.
Ввод данных. Географические данные (числа, текст, изображения) для использования в ГИС вводятся в векторном или растровом виде, если такие данные уже существуют в подходящем цифровом формате, либо предварительно оцифровываются с помощью дигитайзера или сканера. Каждый элемент или объект изображения имеет координатную привязку. Тем самым, любые свойства и характеристики реальных объектов (моделей) или их элементов «привязаны» к местоположению объекта в координатной сетке. При этом всегда следует иметь в виду, что технологии оцифровки или занесения данных в конкретный тематический слой, а также наложение и сведение слоев могут сопровождаться значительными ошибками, которые в дальнейшем приведут к заметным искажениям картографических данных и визуализации результата.
Средства манипулирования представляют собой различные способы выделения, группировки и преобразования данных, например, приведение всей геоинформации к единому масштабу и проекция на определенный тематический слой для удобства совместной обработки.
Для хранения, структурирования и управления данными в ГИС чаще всего используются реляционные БД с элементами OLAP-технологий и технологий создания отчетов.
Запрос и анализ можно выполнять на разных уровнях сложности - от самых простых вопросов типа: «Где находится объект и каковы его описательные свойства?» до поисков и компиляции данных по сложным шаблонам и сценариям вида: "А что если...". В современных ГИС имеются развитые средства анализа взаимной близости и наложения объектов, принадлежащих разным тематическим слоям.
Визуализация. Результаты различных операций можно просто отображать на экране или же создавать (рисовать) новые объекты с любыми наборами атрибутивных характеристик. Развитые средства и способы визуализации позволяют ГИС легко управлять отображением данных. Традиционным результатом обработки, анализа и отображения пространственных географических данных является карта, которая дополняется отчетными документами, рельефными цветными изображениями реальных и смоделированных объектов, фотографиями, таблицами, диаграммами, видеоклипами развития ситуации и другими мультимедийными средствами.
Кроме указанных базовых операций современные ГИС имеют достаточно много специальных групп функций, реализующих пользовательские задачи: прокладку оптимального маршрута, поиск кратчайших расстояний, расчетные задачи пространственной статистики, создание моделей геологических структур, морских и воздушных течений и т. д.
Для графического представления географических данных, описывающих реальные объекты и их модели в ГИС, используются электронные карты и тематические описания. Параметры местоположения объектов и их отношений есть пространственные (метрические) данные, параметры временных и тематических свойств - атрибутивная (описательная) информация.
В основе моделей данных в ГИС лежит классификатор объектов карты. Он определяет состав и содержание метрических, семантических, тематических, динамических свойств объекта и их изобразительных средств. Система условных обозначений формируется с использованием палитры красок, текстуры линий и заливок, шаблонов знаков и шрифтов. В современных ГИС реализована технология послойного графического представления информации, она соответствует представлению координатных моделей в топологической форме (представление объектов и их связей в виде графа). Атрибутивная информация отображается на слое электронной карты числами, символами и их совокупностями - надписями. Связь координатных и атрибутивных данных устанавливается в БД через соответствующие идентификаторы (по умолчанию или через пользовательский интерфейс). Для представления географических объектов применяются две модели:
1) Растровая - отображение участков поверхности суши и океанов в виде дискретного набора элементов (пикселей), составляющих нужную картину. Пиксели образуют отображение тематического слоя электронной карты на экране монитора. Каждый пиксель занимает некоторую малую площадь в виде прямоугольника, имеет координаты центра (X,Y) в плоскости слоя карты, связанные с координатами точек географического объекта, и описание его свойств (яркость, цвет и плотность тона), соответствующих аналогичным свойствам объекта. Растровые цифровые изображения могут быть получены непосредственно при цифровом фотографировании земной поверхности со спутников либо при обработке аэрокосмических фотографий методами цифрового сканирования с использованием дигитайзеров. Такие изображения хороши для зрительного восприятия и удобны для многоаспектной обработки. Однако они занимают много места в памяти вычислительных устройств и плохо масштабируются - при многократном и многоразовом изменении масштаба, сжатии и дешифровке четкость изображений сильно ухудшается. Поэтому в тех случаях, где заранее оговаривается необходимость масштабирования изображений без потери четкости, применяется технология векторной графики.
2) Векторная - это структурно заданное графическое изображение пространственного объекта. Положение точек объекта задается координатами конца вектора (x,y,z) и описанием свойств этой точки. Отображение объекта задается совокупностью векторов. Так как конец вектора (точка) не имеет площади, то при многократном увеличении или уменьшении изображения объекта (масштабировании) искажения не происходит. Векторная графика оперирует точечными, линейными (дуги и контуры) и площадными (полигонными) моделями пространственных объектов.
По своему назначению инструменты поддержки и реализации ГИС разнообразны. Однако среди них можно выделить простые инструменты составления карт и диаграмм: типичными примерами являются инструменты для электронных таблиц, например, Microsoft Map в Excel и Lotus Maps. Эти приложения доступны любому пользователю электронных таблиц MS Excel и Lotus Notes и дают возможность легко использовать функции тематического картирования - отображения на карте географической информации из своей БД.
Дата добавления: 2017-05-02; просмотров: 1484;