Волокнистые композиционные материалы
В волокнистых композитах высокопрочные волокна воспринимают основные напряжения, возникающие в композиции при действии внешних нагрузок, и обеспечивают жесткость и прочность композиции в направлении ориентации волокон.
В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающих исходные характеристики его компонентов, но и включающие свойства, которыми изолированные компоненты не обладают. Появление ряда новых свойств в композитах связано с гетерогенной структурой, обусловливающей наличие большой поверхности раздела между волокнами и матрицей, что существенно повышает трещиностойкость материала.
Для армированных материалов характерны такие механизмы повышения вязкости разрушения, которых нет у гомогенных материалов.Эти механизмы связаны с наличием в композиционных волокнистых материалов большого числа поверхностей раздела, которые могут стать тормозом на пути развития трещины.
Армирование волокнистых КМ может осуществляться по следующим схемам:
– одноосное - в виде волокон, нитей, нитевидных кристаллов, расположенных в матрице параллельно друг другу;
– двухосное - в виде матов из нитевидных кристаллов, фольги, расположенных в матрице в параллельных плоскостях;
–трехосное - отличается отсутствием преимущественного направления в его расположении.
Свойства волокнистых композитов в большой степени зависит от схемы армирования.
При нагружении растяжением временное сопротивление и модуль упругости КМ достигает наибольших значений в направлении расположения волокон, наименьших в поперечном направлении.
Анизотропия свойств не наблюдается при двухосном армировании с взаимно перпендикулярным расположением волокон. Однако по сравнению с одноосным армированием прочность вдоль волокон уменьшается почти в 3 раза с 1000 до 350 МПа.
Прочность КМ в большой степени зависит от прочности сцепления волокон с матрицей.
В качестве армирующих элементов при создании композитов на основе металлических матриц применяются тонкие проволоки из стали, вольфрама, бериллия, ниобия и других металлов.
Армирующие компоненты в композитах применяются в виде моноволокон, нитей, проволок, жгутов, сеток, тканей, лент, холстов.
Стеклянные волокна. Стеклянные волокна широко применяют при создании неметаллических конструкционных композитов — стеклопластиков. При сравнительно малой плотности (2,4÷2,6)·103 кг/м3 они имеют высокую прочность, низкую теплопроводность, теплостойки, стойки к химическому и биологическому действию. Стекловолокна весьма термостойки
Непрерывные волокна получают вытягиванием расплавленной стекломассы через фильеры диаметром 0,8— 3,0 мм и дальнейшим быстрым вытягиванием до диаметра 3—19 мкм.
Органические волокна.Для получения высокопрочных и высокомодульных композитов с полимерной матрицей (органопластиков) применяют волокна на основе ароматических полиамидов (арамидов).
Высокомодульные и высокопрочные арамидные волокна обладают уникальным комплексом свойств: высокими прочностью при растяжении и модулем упругости, термостабильностью, позволяющей эксплуатировать их в широком температурном интервале, хорошими усталостными и диэлектрическими свойствами, незначительной ползучестью.
Углеродные волокна. Углеродным волокнам присущи высокая теплостойкость, низкие коэффициенты трения и термического расширения, высокая стойкость к атмосферным воздействиям и химическим реагентам, различные электрофизические свойства (от полупроводников до проводников). Углеродные волокна имеют высокие значения удельных механических характеристик.
Существуют два основных типа исходных материалов для углеродных волокон:
– химические волокна — вискозные или полиакрилонитрильные (ПАН);
– углеродные пеки.
Процесс получения углеродных волокон из ПАН-волокон включает текстильную подготовку материала, окисление, высокотемпературную обработку (карбонизацию и графитацию).
В процессе высокотемпературной обработки осуществляется переход от органического к углеродному волокну. Обработка проводится в вакууме или в инертной среде - азоте, гелии, аргоне.
Нефтяные и каменноугольные пеки представляюте собой смесь олигомерных продуктов. Волокна из них формуют, пропуская расплав при температуре 370- 620 К через фильеры диаметром 0,3 мм. Затем сформованное волокно вытягивается до степени вытяжки 100 000— 500 000% . При этом достигается высокая ориентация макромолекул волокна. Карбонизация и графитизация пековых волокон производится аналогично ПАН-волокнам.
Плотность углеродных волокон (1,5÷1,95)·103 кг/м3
Борные волокна. Композиты на основе борных волокон имеют высокие прочностные (при растяжении и сжатии) и усталостные характеристики, а также высокий модуль упругости.
Борные волокна представляют собой нити диаметром 12 мкм, сердцевина которых состоит из боридов вольфрама (WВ, W2В6 и WB) , вокруг которой располагается слой поликристаллического бора.
Волокна бора находят широкое применение в производстве композитов на основе полимерной и алюминиевой матриц. Композиты на основе борных волокон и алюминиевой матрицы могут работать при температурах до 640 К.
Плотность борных волокон (2,5÷2,76)·103 кг/м3.
Металлические волокна. Металлические волокна или проволоки являются наиболее экономичными и, в ряде случаев, весьма эффективными армирующими материалами. Для конструкционных композитов, эксплуатируемых при низких и умеренных температурах, используют стальные и бериллиевые проволочные волокна; для композитов, эксплуатируемых при умеренных и высоких температурах, — вольфрамовые и молибденовые.
Дата добавления: 2017-04-05; просмотров: 2486;