Графическое исследование кинематики рядного механизма.


Изобразим в масштабе ,мм/м, кинематическую схему рядного зубчатого механизма. Нанесем на эту схему линейную скорость точки P1, изобразив ее в произвольном масштабе , мм/м*с-1 отрезком Р1Р1 Соединим конец этого отрезка точкуР1 центрами вращения колес 1 и 2 точками 01и 02 и получим прямые, определяющие распределение линейных скоростей этих звеньев, для точек лежащих на линии центров. Эти прямые образуют с линией центров соответственно углы 1 и 2 . Точка Р2является точкой касания начальных окружностей колес 3 и 4. Так как в точке касания начальных окружностей линейные скорости звеньев 2 и 3 равны, а распределение линейных скоростей по линии центров для звена 2 известно, то можно определить отрезок Р2Р2,который изображает скорость точки Р2 в масштабе , мм/м*с-1. Соединив прямой точку Р2 с центром вращения звена 3 получим прямую распределения линейных скоростей для точек звена 3, лежащих на линии центров. Угол, который образует эта прямой с линией центров, обозначим 3 . Угловые скорости звеньев определятся из этой графической расчётной схемы по формулам:

Передаточное отношение, рассматриваемого рядного зубчатого механизма, будет равно:

Формула Виллиса.

Формула Виллиса выводится на основании основной теоремы зацепления и устанавливает соотношение между угловыми скоростями зубчатых колес в планетарном механизме. Рассмотрим простейший планетарный механизм с одним внешним зацеплением (см. рис. 17.3). Число подвижностей в этом механизме равно:

Wпл = 3 n – 2 p1 – 1 p2 = 3 3 – 2 3 – 1 1 = 2,

то есть для получения определенности движения звеньев механизма необходимо сообщить независимые движения двум его звеньям. Рассмотрим движение звеньев механизма относительно стойки и относительно водила. Обозначение угловых скоростей звеньев в каждом из рассматриваемых движений приведены в таблице 17.2.

Таблица 17.2

Движение механизма Звено 1 Звено 2 Звено 3 Звено 4
Относительно стойки 1 2 h 0 =0
Относительно водила *1= 1- h *2= 2- h h- h=0 - h

 

В движении звеньев относительно водила угловые скорости звеньев равны угловым скоростям в движении относительно стойки минус угловая скорость водила. Если в движении относительно стойки ось зубчатого колеса 2 подвижна, то в движении относительно водила оси обоих зубчатых колес неподвижны. Поэтому к движению относительно водила можно применить основную теорему зацепления.

 

 



Дата добавления: 2017-02-13; просмотров: 866;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.