Определение эквивалентного диаметра
Из уравнения пропускной способности 1.73 запишем выражение для определения разницы квадратов давления в любом подучастке трубопровода:
(1.74)
Подставив (1.74а) в (1.74) и приняв z, T и D постоянными величинами, получим:
. (1.75)
С другой стороны, приняв, что участок имеет постоянный диаметр DЭК, можно записать:
, (1.76)
где: LЭК - длина рассчитываемого участка,
.
Приравняв правые части уравнений (1.75) и (1.76), получаем:
(1.77)
откуда
. (1.78)
Для квадратичного режима течения газа в участке, с учетом уравнения
, величина
обратно пропорциональна
, следовательно, выражение (1.77) примет следующий вид:
. (1.79)
В этом случае получаем:
. (1.80)
В полученном соотношении 2 неизвестных DЭК, LЭК, как правило, задаются
и тогда DЭК находится легко.
Определение коэффициента расхода.
Используя уравнение расхода:
, (11)
где: Q0 - пропускная способность эталонного трубопровода), получим зависимость для определения разности квадратов давления в подучастке:
, (1.81)
Тогда для всего участка:
, (1.82) или используя уравнение (11):
. (1.83)
Приравняв правые части уравнений (1.82) и (1.83) получаем:
, (1.84), откуда
. (1.85)
Дата добавления: 2017-02-13; просмотров: 2598;











