Общая характеристика переходных процессов
В электрических цепях возможны включения и отключения отдельных ветвей, короткие замыкания участков цепи, различного рода переключения. Любые изменения в электрических цепях можно представить в виде переключений или коммутаций. Характер коммутации указывается в схеме с помощью рубильника со стрелкой. По направлению стрелки можно судить, замыкается или размыкается рубильник.
При коммутации в цепи возникают переходные процессы, т.е. процессы перехода токов и напряжений от одного установившегося значения к другому. Изменения токов и напряжений вызывают одновременное изменение энергии электрического и магнитного полей, связанных с элементами цепи - емкостями и индуктивностями. Однако энергия электрического поля и энергия магнитного поля могут изменяться только непрерывно, так как скачкообразное изменение потребовало бы от источника бесконечно большой мощности. На этом рассуждении основаны законы коммутации.
Первый закон. В любой ветви с индуктивностью ток не может изменяться скачком и в момент коммутации сохраняет то значение, которое он имел непосредственно перед моментом коммутации
iL (0+) = iL (0-),
где iL (0+) - ток в ветви с индуктивностью в момент коммутации, сразу после коммутации. Знак "+" в формуле обычно не записывается. Время переходного процесса отсчитывается от момента коммутации;
iL (0-) - ток в индуктивности непосредственно перед коммутацией.
Второй закон. Напряжение на емкости сразу после коммутации сохраняет то значение, которое оно имело непосредственно перед моментом коммутации.
uC (0+) = uC (0-),
где uC (0+) - напряжение на емкости в момент коммутации;
uC (0-) - напряжение на емкости непосредственно перед моментом коммутации.
Допущения, применяемые при анализе переходных процессов:
1. Полагают, что переходный процесс длится бесконечно большое время.
2. Считают, что замыкание и размыкание рубильника происходит мгновенно, без образования электрической дуги.
3. Принимают, что к моменту коммутации предыдущие переходные процессы в цепи закончились.
В соответствии с классическим методом расчета, переходный ток в ветви схемы представляют в виде суммы принужденного и свободного токов.
.
где iпр(t) - принужденный ток, определяется в установившемся режиме после коммутации. Этот ток создается внешним источником питания. Если в цепь включен источник постоянной ЭДС, принужденный ток будет постоянным, если в цепи действует источник синусоидальной ЭДС, принужденный ток изменяется по периодическому, синусоидальному закону;
iсв(t) - свободный ток, определяется в схеме после коммутации, из которой исключен внешний источник питания. Свободный ток создается внутренними источниками питания: ЭДС самоиндукции индуктивности или напряжением заряженной емкости.
Свободный ток определяют по формуле:
.
Количество слагаемых в формуле равно числу реактивных элементов (индуктивностей и емкостей) в схеме.
P1, P2 - корни характеристического уравнения.
А1, А2 - постоянные интегрирования, определяются с помощью начальных условий.
Начальные условия - это переходные токи и напряжения в момент коммутации, в момент времени t, равный нулю.
Начальные условия могут быть независимыми или зависимыми.
Независимыми называют начальные условия, подчиняющиеся законам коммутации, законам постепенного, непрерывного изменения. Это напряжение на емкости uc(0) и ток в ветви с индуктивностью iL(0) в момент коммутации.
Остальные начальные условия: напряжение и ток в ветви с сопротивлением uR(0) и iR(0), напряжение на индуктивности uL(0) , ток в ветви с емкостью iC(0) - это зависимые начальные условия. Они не подчиняются законам коммутации и могут изменяться скачком.
Дата добавления: 2017-01-26; просмотров: 1755;