Измерение радиоактивных излучений
Измерение a-, b- и g-излучения основано на воздействии его на вещество. Воздействие может заключаться в ионизации газа, в сцинтилляции (свечении) прозрачных кристаллов, в изменении электропроводности полупроводников. Соответственно различают ионизационные, сцинтилляционные и полупроводниковые приборы. В этих приборах энергия радиоактивной частицы преобразуется в энергию импульса; количество импульсов за единицу времени соответствует радиоактивности вещества, а амплитуда импульса – энергии радиоактивной частицы. Для регистрации нейтронов используются те же приборы, но в вещество детектора добавляются элементы (Li, В), которые аномально поглощают нейтроны, испуская при этом вторичное гамма-излучение, которое и регистрируется прибором.
Поле радиоактивного излучения характеризуется потоком частиц N или интенсивностью излучения J.
Поток численно равен количеству частиц, проходящих через единичную площадку за единицу времени.
Интенсивность – это поток энергии
где Ni – поток i-x частиц с энергией Ei.
Приборами измеряются как интегральные потоки и интенсивности (радиометры), так и потоки и интенсивности излучений по интервалам их энергий (спектрометры).
Измеряемой оценкой интенсивности излучения является мощность экспозиционной дозы. Мощность дозы в единицах СИ измеряется в ампер на килограмм (А/кг). Внесистемная единица – рентген в секунду: 1 Р/с=2,58 А/кг. В геофизической практике пользуются единицей мкР/ч. МкР/ч – это мощность экспозиционной дозы гамма- и рентгеновского излучения, которое совместно с возникающим в веществе вторичным корпускулярным излучением образует в 1 см3 свободного от водяных паров воздуха (при температуре 0°С и давлении 760 мм рт. ст.) 2,083×103 пар ионов за час.
1.5. Естественная радиоактивность горных пород
Естественная радиоактивность верхней оболочки Земли обусловлена присутствием в слагающих ее горных породах и минералах большого количества неустойчивых (радиоактивных) изотопов различных легких и тяжелых элементов (табл. 1.2). По условиям возникновения и нахождения в земной коре естественные радиоактивные элементы могут быть разделены на четыре группы.
Первая группа – долгоживущие радиоактивные элементы (тяжелые), образовавшиеся в начальный (догеологический) этап развития планеты и являющиеся родоначальниками трех естественных радиоактивных семейств. Содержание этих элементов в земной коре (при отсутствии дополнительных эпох нуклеосинтеза) постепенно уменьшается в соответствии с периодами их полураспада.
Вторая группа – короткоживущие радиоактивные элементы – дочерние продукты распада урана, актиноурана и тория, входящие в состав этих семейств. Присутствие в земной коре многочисленной группы этих элементов, являющихся основными b- и g-излучателями горных пород, полностью зависит от содержания родоначальников семейства. Избирательное отделение дочерних элементов (Io, Ra, Rn и др.) в результате каких-либо геохимических процессов (выщелачивания, эманирования и др.) приводит к их сравнительно быстрому (в геологическом понимании) исчезновению (распаду).
Третья группа – долгоживущие одиночные (легкие и тяжелые) радиоактивные изотопы ( , , и др.), не образующие семейств и возникшие в начальную (догеологическую) эпоху развития Земли. Их содержание в земной коре постепенно уменьшается со скоростью, определяющейся периодом полураспада изотопов.
Четвертая группа – радиоактивные изотопы (преимущественно легкие и короткоживущие ), возникающие в атмосфере, гидросфере и литосфере земной коры в результате взаимодействия космических частиц с атомными ядрами вещества Земли.
Таблица 1.2 – Радиоактивные элементы земной коры и константы их распада
Элемент | Содержание изотопа в природной смеси элемента, % | Содержание изотопа в земной коре | Тип распада | Энергия частиц и g-квантов, кэВ | Конечный продукт распада | Т1/2, лет |
Уран, | 99,37 | 2,6×10-4×0,993 | a-распад | 4,49×109 | ||
Радий, | - | - | a-распад | - | ||
Актиноуран, | 0,73 | 2,6×10-4×0,0073 | a-распад | 7,13×108 | ||
Торий, | 11,3×10-4 | a-распад | 1,40×1010 | |||
Калий, | 0,011 | 2,5×0,00012 | b-распад К-захват | g-1460 b-1330 | 1,47×109 1,24×1010 | |
Рубидий, | 27,2 | 0,009×0,272 | b-распад | b-274 | 5×1010 или 4,7×1010 | |
Индий, | 95,72 | 1×10-8×0,957 | b-распад | - | 6,0×1014 | |
Олово, | 6,11 | 2,2×10-4×0,061 | 2b-распад | - | 2,4×1017 | |
Лантан, | 0,089 | 3 10-3×0,00089 | b-распад К-захват | 1,1×1011 | ||
Самарий, | 14,97 | 7×10-4×0,149 | a-распад b-распад | - | 1,05×1011 | |
Неодим, | 5,62 | 3,2×10-3×0,056 | b-распад | - | l×10l6 | |
Лютеций, | 2,59 | 6,5×10-5×0,025 | b-распад К-захват | 2,1×1010 | ||
Рений, | 62,93 | 7×108×0,629 | b-распад | 1,2×1011 | ||
Радиоуглерод, | - | - | b-распад |
Число радиоактивных элементов в догеологическую стадию развития Земли было, по-видимому, значительно большим, но многие радиоактивные изотопы с периодом полураспада (3-5)×108 лет к настоящему времени полностью или почти полностью распались. Основная доля радиационного излучения горных пород земной коры связана с радиоактивным распадом элементов трех радиоактивных семейств (U, AcU, Th и дочерних продуктов) и калия. Более 99 % радиогенного тепла, генерируемого в недрах планеты, также обусловлено этими элементами.
Значение других менее распространенных или менее радиоактивных изотопов в общем балансе радиоактивности незначительно. Распад ядер этих элементов используется главным образом для определения радиогеологического возраста горных пород и минералов.
Фактически с помощью измерения такого физического явления, как радиоактивность, изучается геохимия радиоактивных элементов, радиогеохимические закономерности формирования и изменения горных пород.
1.4.1. Формы нахождения радиоактивных элементов в горных породах
Элементы уран и торий входят в семейство актиноидов, переходных элементов, у которых достраивается глубоко расположенный 5f-уровень, подобно тому как в семействе лантаноидов (редкоземельных элементов) достраивается 4f-уровень, а у элементов группы железа – 3d-уровень. Принадлежность U и Th к переходным элементам определяет широкий спектр проявления их геохимических свойств.
1. В связи с тем, что происходит заполнение внутренней электронной оболочки, все актиноиды имеют близкие химические свойства и практически одинаковые радиусы ионов. Так, радиусы Th4+ и U4+ равны соответственно 0,99 и 0,93 А°. Это определяет близкое геохимическое поведение урана и тория, вхождение их в качестве изоморфных примесей в одни и те же минералы, замещение друг друга в собственных минералах.
2. Характерны явления изоморфизма урана и тория с редкоземельными элементами (церий, лантан, неодим и др.).
3. Помимо сходства с лантаноидами, уран и торий имеют близкие химические свойства с переходными элементами других периодов: Ti, Zr, Hf, V, Nb и Та; уран, кроме того, – Сr, Мо и W.
Химическая похожесть названных элементов с радиоактивными позволяет, с одной стороны, объяснить повышенную радиоактивность минералов или горных пород, содержащих эти элементы. С другой стороны, по содержаниям урана и тория, которые легко определяются в силу их радиоактивности, можно оценить содержание других химически похожих на них элементов.
Большой размер ионов урана и тория определяет их повышенную способность к сорбции на поверхности твердых тел.
Различие между ураном и торием проявляется в том, что уран, кроме четырехвалентного состояния, когда его свойства близки к торию, может находиться также в шестивалентном состоянии. При свободном доступе кислорода шестивалентный уран находится в форме комплексного катиона уранила – (UO2)2+ большого размера, благодаря чему он не может замещать другие катионы в минералах.
Соотношение U4+ и U6+ определяется окислительно-восстановительным потенциалом среды. В общем уран в шестивалентном состоянии более подвижен, чем в четырехвалентном.
В горных породах уран и торий присутствуют в трех формах:
1) в виде собственных минералов; наиболее распространены торианит, уранинит, торит и др.;
2) в виде изоморфной примеси в минералах;
3) в рассеянной форме: в дефектах структур породообразующих минералов, в адсорбированном состоянии на поверхности минеральных зерен и в микротрещинах.
В связи с низкими, порядка 10-4 %, содержаниями урана и тория в горных породах преобладают третья и вторая формы их нахождения. Следует отметить, что в рассеянной форме уран и торий наиболее подвижны, наиболее способны к выщелачиванию метаморфическими и гидротермальными растворами.
Калий в силу относительно высокого содержания в породе образует в основном собственные минералы (табл. 1.3). Повышенное его количество отмечается в калиевых слюдах и полевых шпатах, в глинистых минералах.
Таблица 1.3 – Содержание калия в породообразующих минералах
Минерал | К, % | Минерал | К, % |
Кварц | 0,09 | Слюды: | |
Полевые шпаты: | биотит | 8,25 | |
ортоклаз | 11,8 | мусковит | 9,32 |
микроклин | 10,9 | флогопит | 8,66 |
плагиоклаз | 0,54 | лепидолит | 8,04 |
глауконит | 5,08 | хлорит | 0,04 |
1.4.2. Радиоактивность магматических горных пород
Поведение урана и тория в магматическом процессе во многом определяется их литофильными свойствами, сравнительно низкими содержаниями и ассоциацией с более распространенными редкоземельными элементами.
Литофильные свойства урана и тория проявляются в их высоком сродстве к кислороду. Все собственные минералы урана и тория имеют в своем составе кислород. В этом уран и торий сходны с другими литофильными элементами, такими как кремний, алюминий, натрий и калий, и отличаются от элементов сидерофильных (Fe, Co, Ni, Pt и др.) или халькофильных (Си, Ag, Pb, Zn и др.), которые могут образовывать сульфидные соединения или находиться в самородном состоянии.
Литофильность всех трех радиоактивных элементов определяет согласованное их поведение в магматических процессах и главную закономерность магматических пород: содержание урана, тория и калия и общая радиоактивность пород коррелируются с их кремнекислотностью. Наиболее радиоактивными являются кислые разности пород, наименее – основные и ультраосновные (табл. 1.4).
Таблица 1.4 – Среднее содержание радиоактивных элементов
в изверженных породах
Породы | U, 10-4 % | Th, 10-4 % | Th/U | К, % |
Кислые | 3,5 | 5,1 | 3,34 | |
Средние | 1,8 | 3,9 | 2,3 | |
Основные | 0,5 | 3,7 | 0,83 | |
Ультраосновные | 0,003 | 0,005 | 1,7 | 0,03 |
Отношение тория к урану является хорошим показателем конкретных условий образования породы. В общем для магматических пород это отношение порядка четырех (см. табл. 1.4). Исключением являются ультраосновные породы, в большей степени обедненные торием, нежели ураном. Возрастание в среднем этого отношения в кислых разновидностях пород объясняется уже отмеченной большей подвижностью урана в конце магматического процесса.
Эффузивные породы, как правило, отличаются более высокой радиоактивностью в сравнении с интрузивными аналогами. Происходит это преимущественно за счет урана, который в условиях медленной кристаллизации интрузивных пород имеет больше возможности к миграции. В силу этого эффузивные аналоги отличаются в среднем более высокими торий-урановыми отношениями.
1.4.3. Радиоактивность осадочных пород
Содержание радиоактивных элементов в осадочных породах в среднем более низкое, чем в магматических (табл. 1.5). Это связано со значительной дифференциацией радиоактивного вещества при разрушении магматических пород и осадконакоплении. Особенно это касается тория, который может обособляться в монацитовых и циркониевых россыпях, содержащих торий до 10 %. В силу этого осадочные отложения в целом характеризуются более низкими торий-урановыми отношениями (<3,7) по сравнению с магматическими.
Таблица 1.5 – Содержание радиоактивных элементов
в осадочных отложениях континентальной части земной коры
Группы пород | К, % | U, 10-4 % | Th, 10-4 % | Th/U |
Песчано-глинистые | 1,5-2,7 | 2,4-4,0 | 9,0-11,5 | 2,9-3,7 |
Кремнистые | 0,3-1,1 | 1,7-2,8 | 2,2-6,2 | 1,2-2,2 |
Карбонатные | 0,3-0,8 | 1,6-7,8 | 1,8-11,9 | 0,8-1,5 |
Соленосные | 0,02-10×n | 0,9-1,0 | 1,0 | 1,0-1,1 |
Генеральной закономерностью осадочных пород является значительно более низкая радиоактивность кремнистых и карбонатных разностей пород (мергели, доломиты, кремнистые сланцы) по сравнению с терригенными (песчано-глинистыми) разностями. Особенно низким содержанием в этих породах отличаются К и Th. Эта закономерность проявляется как для отдельных разновидностей пород, так и в вариациях содержания радиоактивных элементов в кремнисто-глинистых или известковисто-глинистых породах в зависимости от соотношения глинистого, известковистого или кремнистого компонентов в горной породе. Наблюдаемое часто повышенное содержание урана в карбонатных породах связано с их битуминозностью.
Для терригенных отложений в ряде случаев наблюдается зависимость радиоактивности от степени дисперсности осадков. Содержание радиоактивных элементов и общая радиоактивность растут от песчанистых разностей к песчано-глинистым и максимальны для глинистых разностей пород. Это обстоятельство позволяет в случае песчано-глинистых разрезов определять степень глинистости пород по их радиоактивности, тем самым разделяя песчанистые пористые породы, которые могут служить коллектором для нефти, газа и воды, от глинистых пород, способных выполнять роль экрана.
Повышенная радиоактивность глин связана с их высокой способностью сорбировать катионы, особенно с большими зарядами, каковыми являются ионы тория и урана, а также с содержанием калия в глинистых минералах. Однако закономерности радиоактивности терригенных пород чаще всего не так просты.
Причиной отклонения от общих закономерностей служат конкретные условия выветривания и осадконакопления, индикаторами которых и являются радиоактивные элементы.
При выветривании горных пород основная часть тория и калия мигрирует с обломочным материалом и тонкими взвесями. Акцессорные минералы, в которые торий и уран входят в качестве изоморфных примесей, а также ториевые и калий-содержащие (калишпат, гидрослюды) минералы относительно устойчивы в зоне выветривания. Наибольшей подвижностью обладают уран и торий, рассеянные в кристаллах породообразующих минералов и находящиеся в сорбированном состоянии. Уран в сравнении с торием отличается значительно большей растворимостью, так как присутствует в зоне гипергенеза преимущественно в шестивалентной подвижной форме. Большинство закономерностей в поведении радиоактивных элементов в седиментационном процессе может быть объяснено следующими обстоятельствами: а) преимущественной миграцией тория и калия в твердом состоянии в виде частиц и взвесей, а урана – в растворе; б) высокой способностью ионов тория и урана сорбироваться на заряженной поверхности глинистых минералов, органики, фосфоритов, гидроокислов железа, алюминия, марганца и других природных коллоидов; в) способностью урана резко терять свою подвижность при переходе из шестивалентного состояния, в котором он преимущественно находится в растворах, в четырехвалентное, если на пути миграции встречаются восстановительные барьеры, такие как углерод- или пиритсодержащие породы.
В большей мере совпадают области накопления калия и тория. Осадки прибрежных мелководных фаций, формирующиеся в непосредственной близости от области сноса, характеризуются максимальным накоплением калия и тория. В случае полимиктового состава осадков повышенная радиоактивность характерна как для песчанистых, так и для глинистых образований. В глубь бассейна содержание калия и тория уменьшается и переходные фации характеризуются пониженной радиоактивностью. В направлении от береговой линии калийсодержащие глинистые минералы (гидрослюды, глауконит) сменяются бескалиевыми, преимущественно монтмориллонитами.
В осадках относительно глубоководных фаций, представленных тонким глинистым материалом, концентрация тория вновь повышается. Это несомненно указывает на различные формы поступления его в седиментационный бассейн, с одной стороны, в виде обломочных минералов, определяющих накопление тория в мелководных прибрежных фациях, с другой – в сорбированной форме, обеспечивающей повышенное содержание его в осадках с увеличением количества тонкого глинистого материала. Как правило, содержание тория в глинистых породах относительно глубоководных частей бассейнов выше, чем в песчаниках прибрежной зоны.
Геохимические особенности урана в седиментационных процессах обусловлены тем, что он поступает в бассейн осадконакопления в растворенном состоянии. Определяющим фактором в осаждении урана является содержание в осадках органического вещества. Четкая корреляция содержаний урана и органического вещества является наиболее яркой особенностью осадочных пород.
Возможны следующие механизмы осаждения урана из раствора в осадок органическим веществом: а) процессы сорбции; б) образование ураноорганических соединений; в) восстановление урана в процессе окисления органического вещества.
В современных морских бассейнах существуют две зоны накопления в осадках органического вещества. Первая соответствует относительно глубоководным условиям накопления тонких осадков. Формирование относительно равномерно распределенного в породе органического вещества здесь происходит за счет масс планктона и бентоса. Наблюдается приуроченность органического вещества к глинистой фракции. Вторая зона накопления органического вещества в осадках соответствует условиям формирования мелководных фаций. Органическое вещество в осадках связано с разложением на дне осадочного бассейна различного растительного материала. Распределение органического вещества неравномерное, связь с гранулометрическим составом отсутствует.
Соответственно существуют и две области накопления урана в осадках: прибрежно-морская и глубоководная. В первой содержание урана резко неравномерное, зависимости его от глинистости отложений, характерной для глубоководных осадков, не наблюдается. Глубоководные глинистые осадки характеризуются относительно равномерным и высоким содержанием урана. Наибольшие обуглероженность и ураноносность наблюдаются у пород, формировавшихся в условиях резко восстановительной среды.
Таким образом, для пород переходных условий осадконакопления отмечаются согласованное понижение содержаний всех трех радиоэлементов и низкая радиоактивность в сравнении с породами глубоководных и прибрежных фаций. Последние могут быть распознаны по соотношениям в содержаниях радиоактивных элементов. Во всех случаях глинистые и углеродистые породы характеризуются повышенными содержаниями, по крайней мере, урана и тория; обогащенность их также калием указывает на преимущественно мелководные условия осадконакопления, хотя и в этом могут быть исключения. Чаще всего наиболее согласованные изменения содержания обнаруживаются у Th и К.
1.4.5. Изменение радиоактивности пород
в ходе метаморфических процессов
Метаморфизм как процесс приспособления пород к изменяющимся физико-химическим условиям приводит к масштабной миграции петрогенных, рудных и радиоактивных элементов. Содержание последних в метаморфизованных породах зависит как от радиоактивности исходных пород, так и от степени метаморфизма. Исходная радиоактивность пород в большей степени сказывается преимущественно при слабой степени метаморфогенного преобразования.
Среди метаморфических пород по содержанию урана выделяются две группы образований: слаборадиоактивные (мафические силикатные породы – амфиболиты, амфиболовые сланцы, аподиабазы и др.) и породы с нормальной или слабоповышенной радиоактивностью (некоторые разновидности гнейсов, кристаллические сланцы, метаморфизованные песчаники). При увеличении степени регионального метаморфизма содержание всех радиоактивных элементов понижается.
1.5. Свойства горных пород
по отношению к нейтронному и гамма-излучению
Свойства горных пород, связанные с присутствием в них радиоактивных элементов, проявляют себя естественным образом, без воздействия извне. Если же породу облучать каким-либо видом радиоактивного излучения, то проявится другая группа её свойств, связанная с реагированием породы на это излучение. Эксперименты показывают, что при этом изменяется и порода, и излучение, т. е. имеет место взаимодействие. Со стороны излучения основным качеством, влияющим на его взаимодействие с породой, является энергия. Она в ходе взаимодействия радиоактивных частиц с породой изменяется (теряется), характер взаимодействия меняется, что вынуждает горную породу проявлять в ходе взаимодействия уже качественно иные свойства.
В разведочной геофизике для оценки состава пород по их взаимодействию с радиоактивным излучением используются преимущественно два вида частиц: нейтроны и гамма-кванты. Это связано с повышенной способностью данных незаряженных частиц проникать в глубь породы, а также со сравнительно простым способом получения источников гамма- и нейтронного излучения. Свойства горных пород, связанные с их взаимодействием с нейтронами и гамма-квантами, будут предметом нашего дальнейшего изложения.
1.3.1. Понятие сечения взаимодействия
Нейтроны взаимодействуют с ядрами атомов горной породы, гамма-кванты – с ядрами, атомами и электронами. Взаимодействие носит статистический характер, т. е. на конкретном участке породы оно может произойти или не произойти, проявиться в том или ином качестве. Важно оценить степень возможности каждого вида взаимодействия, влияния на неё состава породы и свойств частиц.
Пусть на плоскую поверхность породы падает параллельный пучок частиц, поток которых обозначим No (рис. 1.3).
Рисунок 1.3 – К объяснению закона ослабления излучения
Частицы, проходя через горную породу, могут с ней взаимодействовать: изменить свое направление движения (рассеяться) или поглотиться. Поток частиц, не взаимодействовавших с горной породой на расстоянии х от её поверхности, обозначим N, а число взаимодействующих частиц на следующем малом отрезке dx обозначим dN. Тогда очевидно соотношение
, | (1.11) |
где m имеет смысл вероятности взаимодействия частицы с породой на единичном расстоянии. Поскольку в ходе взаимодействия теряется энергия частиц, т. е. происходит ослабление излучения, m называют линейным коэффициентом ослабления.
Интегрирование выражения (1.11) приводит к закону ослабления излучения в породе
. | (1.12) |
Коэффициент ослабления зависит от свойств (энергии) излучения, от свойств атомов в горной породе, а также от количества последних в единице объема породы. Удобно использовать в качестве параметра величину, зависящую от меньшего числа переменных. Таким параметром является сечение взаимодействия d, связанное с m простым соотношением:
, | (1.13) |
где п – число атомов (ядер) в единице объема породы.
Если взаимодействие происходит с электронами, то справедливо выражение:
, | (1.14) |
где z – порядковый номер элемента, равный числу электронов в атоме.
Сечение взаимодействия имеет смысл вероятности взаимодействия нейтрона (гамма-кванта) с атомом (ядром, электроном), находящимся в единичном объеме. Оно имеет размерность площади и может быть представлено как часть единичной поверхности, которая оказывается «непроходимой» для частицы. Порядок сечения взаимодействия составляют 10-28 м2. Эта величина принята в качестве внесистемной единицы измерения сечений взаимодействия и называется барном.
Количество атомов (ядер) в единице объема породы связано с её плотностью (s):
, | (1.15) |
где А – атомный вес элементов;
L – число Авогадро.
Соответственно число электронов в единичном объеме равно
. | (1.16) |
Для многих элементов горных пород отношение порядкового номера к атомному весу постоянно и равно 0,5 или мало отличается от этого значения. Взять хотя бы наиболее распространенные элементы земной коры – Si и О, для которых атомный вес ровно в два раза больше порядкового номера, т. е. количество протонов и нейтронов в ядре одинаково. Для тяжелых элементов это соотношение нарушается. Для характеристики взаимодействия с гамма-квантами электронов горной породы вводится понятие электронной плотности тg:
. | (1.17) |
Для большинства горных пород тg., близка к единице (табл. 1.6).
Соотношения для коэффициентов ослабления с учетом (1.13) и (1.15) принимают вид:
– при взаимодействии с атомами и ядрами
, | (1.18) |
– при взаимодействии с электронами
. | (1.19) |
Таблица 1.6 – Гамма-параметры горных пород и минералов
Порода, минерал | sср, г/см2 | mg | zэф | m, см-1 (Е=0,5 МэВ) |
Галенит | 7,5 | 0,895 | 77,62 | 0,577 |
Гематит | 5,1 | 0,946 | 23,0 | 0,415 |
Магнетит | 5,05 | 0,946 | 23,55 | 0,411 |
Пирит | 5,05 | 0,967 | 21,6 | 0,419 |
Хромит | 4,55 | 0,943 | 22,0 | 0,369 |
Барит | 4,45 | 0,892 | 45,0 | 0,340 |
Халькопирит | 4,2 | 0,955 | 24,6 | 0,345 |
Диабаз | 3,0 | 0,989 | 15,92 | 0,260 |
Известняк | 2,75 | 1,0 | 15,3 | 0,237 |
Гранит | 2,75 | 0,987 | 13,64 | 0,236 |
Доломит | 2,67 | 0,997 | 13,8 | 0,229 |
Мергель | 2,4 | 0,997 | 14,74 | 0,206 |
Песчаник | 2,3 | 1,02 | 12,39 | 0,198 |
Глина | 2,1 | 1,00 | 13,07 | 0,181 |
Как видим, вероятность взаимодействия нейтронов и гамма-квантов с породой зависит от её плотности.
Поскольку в формулу коэффициента ослабления плотность входит линейно, то отношение не зависит от плотности и называется массовым коэффициентом ослабления.
1.3.2. Процессы взаимодействия гамма-квантов с горными породами
Существуют три вида взаимодействия: поглощение гамма-кванта атомом или ядром и рассеяние гамма-кванта электронами (рис. 1.4). Какой из видов взаимодействия будет наиболее вероятен, зависит от энергии гамма-квантов и от свойств породы.
Рисунок 1.4 – Схемы процессов взаимодействия гамма-квантов
с горной породой: а – фотоэлектрическое поглощение;
б – комптоновское рассеяние; в – ядерное поглощение
Фотоэлектрическое поглощение энергии гамма-кванта происходит на атомах горной породы. Энергия гамма-кванта расходуется на преодоление энергии связи электрона на i-й оболочке и на сообщение электрону кинетической энергии:
. | (1.20) |
Чтобы электрон не вылетал из атома со скоростью, близкой к предельной скорости света, энергия гамма-кванта должна быть соизмерима с энергией связи электрона в атоме. Процесс фотопоглощения характерен для гамма-квантов низкой энергии и для атомов с большим пор ядковым номером z, поскольку чем больше заряд ядра z, тем больше энергия связи электронов. Еi больше на внутренних оболочках, поэтому при фотопоглощении гамма-кванта электрон вырывается с внутренних К- или L-оболочек.
Сечение фотоэлектрического взаимодействия также зависит от z и hn:
. | (1.21) |
где m =3–4,5, а – коэффициент.
Формула (1.21) справедлива для моноэлементной породы. Реальные горные породы состоят из нескольких элементов с различными z. Для полиэлементной горной породы вводится понятие эффективного порядкового номера zэф.Формула для zэф получена из исходного предположения о равенстве эффекта фотопоглощения в породе с zэф и в моноэлементной среде с порядковым номером z:
. | (1.22) |
где pi - относительная доля в горной породе i-гo элемента с порядковым номером zi;
т – показатель, принимающий значения в пределах 3-4,5.
Из формулы видно, что zэф, а значит, и вероятность фотоэлектрического поглощения сильно зависят от присутствия и содержания в породе тяжелых элементов, каковыми являются все рудные элементы. Например, порядковый номер у железа - 26, у свинца - 82, у ртути - 80, в то время как безрудная горная порода имеет zэф порядка 12-14 (см. табл. 1.6).
Комптоновское рассеяние заключается во взаимодействии гамма-квантов с электронами горной породы. Этот вид взаимодействия возможен для гамма-квантов, энергия которых превышает энергию связи электрона в атоме, так что взаимодействие происходит со свободным электроном. Процесс более характерен для сред с низкими значениями z. Его можно рассматривать как столкновение двух шариков, исход которого зависит от их массы, с одной стороны, постоянной массы электрона, с другой – зависящей от энергии массы гамма-кванта:
. | (1.23) |
В результате взаимодействия гамма-квант рассеивается – теряет часть энергии и изменяет направление движения. Энергия рассеянного гамма-кванта зависит от энергии падающего и от угла рассеивания Q:
. | (1.24) |
Наибольшие потери энергии происходят при рассеивании на больший угол; чем больше энергия гамма-кванта, тем большая её часть теряется при рассеянии.
Сечение комптоновского рассеяния сложным образом зависит от энергии гамма-излучения. Коэффициент ослабления гамма-излучения за счет комптоновского рассеяния зависит также от плотности породы и электронной плотности (табл. 1.6) и практически не зависит от вещественного состава породы, определяемого z.
Ядерное поглощение характерно для гамма-квантов с высокой энергией и сред с высокими z. Процесс заключается в исчезновении гамма-кванта вблизи ядра и образовании за счет его энергии двух частиц – электрона и позитрона. Этот эффект имеет пороговое значение энергии, равное энергии покоя электрона и позитрона: 2me×с2=1,02 МэВ. Сечение ядерного поглощения пропорционально z2 и сложным образом зависит от энергии гамма-кванта: вначале dя примерно пропорционально (hv-1,02), а при больших значениях энергии зависимость близка к логарифмической.
В ходе всех трех процессов взаимодействия теряется энергия гамма-излучения. Полное сечение взаимодействия будет представлять сумму сечений всех трех взаимодействий, каждое из которых характерно для определенных энергий гамма-квантов: гамма-кванты низкой (<0,5 МэВ) и высокой (>3 МэВ) энергий горная порода преимущественно поглощает, причем тем интенсивнее, чем выше её эффективный порядковый номер, а гамма-кванты средних интервалов энергий – преимущественно рассеивает, и этот процесс не зависит от элементного состава породы, т. е. её zэф.
1.3.3. Гамма-параметры горных пород
Измеряя гамма-излучение, прошедшее через горную породу, можно определить её поглощающие и рассеивающие способности, приближенно оценить элементный состав и плотность породы. Для разделения влияния zэф и s на распределение гамма-квантов используются различные интервалы энергии: для определения s – область комптоновского рассеяния, для определения zэф – область фотоэлектрического поглощения.
Влияние элементного состава на распределение гамма-квантов сказывается интегрирование, через zэф. Безрудные горные породы характеризуются значениями zэф, близкими к порядковому номеру кремния – 14. Несколько более высокими значениями отличаются породы повышенной основности (за счет железа) и известняки. Увеличение в породах содержаний тяжелых элементов приводит к повышению их zэф и способности к поглощению гамма-квантов. Так, по аномальному поглощению гамма-излучения могут быть обнаружены баритовые, хромитовые, галенитовые и другие руды тяжелых металлов. Из табл. 1.6 можно видеть боле
Дата добавления: 2021-05-28; просмотров: 246;