Собственные векторы и собственные значения линейного оператора


Вектор Х ≠ 0 называют собственным вектором линейного оператора с матрицей А, если найдется такое число l, что АХ = lХ.

При этом число l называют собственным значением оператора (матрицы А), соответствующим вектору Х.

 

Иными словами, собственный вектор – это такой вектор, который под действием линейного оператора переходит в коллинеарный вектор, т.е. просто умножается на некоторое число. В отличие от него, несобственные векторы преобразуются более сложно.

 

Запишем определение собственного вектора в виде системы уравнений:

Перенесем все слагаемые в левую часть:

Последнюю систему можно записать в матричной форме следующим образом:

(А - lЕ)Х = О

Полученная система всегда имеет нулевое решение Х = О. Такие системы, в которых все свободные члены равны нулю, называют однородными. Если матрица такой системы – квадратная, и ее определитель не равен нулю, то по формулам Крамера мы всегда получим единственное решение – нулевое. Можно доказать, что система имеет ненулевые решения тогда и только тогда, когда определитель этой матрицы равен нулю, т.е.

|А - lЕ| = = 0

Это уравнение с неизвестным l называют характеристическим уравнением (характеристическим многочленом) матрицы А (линейного оператора).

Можно доказать, что характеристический многочлен линейного оператора не зависит от выбора базиса.

 

Например, найдем собственные значения и собственные векторы линейного оператора, заданного матрицей А = .

Для этого составим характеристическое уравнение |А - lЕ| = = (1 - l)2 – 36 = 1 – 2l + l2 - 36 = l2 – 2l - 35 = 0; Д = 4 + 140 = 144; собственные значения l1 = (2 - 12)/2 = -5; l2 = (2 + 12)/2 = 7.

Чтобы найти собственные векторы, решаем две системы уравнений

(А + 5Е)Х = О

(А - 7Е)Х = О

Для первой из них расширенная матрица примет вид

,

откуда х2 = с, х1 + (2/3)с = 0; х1 = -(2/3)с, т.е. Х(1) = (-(2/3)с; с).

Для второй из них расширенная матрица примет вид

,

откуда х2 = с1, х1 - (2/3)с1 = 0; х1 = (2/3)с1, т.е. Х(2) = ((2/3)с1; с1).

Таким образом, собственными векторами этого линейного оператора являются все вектора вида (-(2/3)с; с) с собственным значением (-5) и все вектора вида ((2/3)с1; с1) с собственным значением 7.

 

Можно доказать, что матрица оператора А в базисе, состоящем из его собственных векторов, является диагональной и имеет вид:

,

где li – собственные значения этой матрицы.

Верно и обратное: если матрица А в некотором базисе является диагональной, то все векторы этого базиса будут собственными векторами этой матрицы.

Также можно доказать, что если линейный оператор имеет n попарно различных собственных значений, то соответствующие им собственные векторы линейно независимы, а матрица этого оператора в соответствующем базисе имеет диагональный вид.

 

Поясним это на предыдущем примере. Возьмем произвольные ненулевые значения с и с1, но такие, чтобы векторы Х(1) и Х(2) были линейно независимыми, т.е. образовали бы базис. Например, пусть с = с1 = 3, тогда Х(1) = (-2; 3), Х(2) = (2; 3). Убедимся в линейной независимости этих векторов:

= -12 ≠ 0. В этом новом базисе матрица А примет вид А* = .

Чтобы убедиться в этом, воспользуемся формулой А* = С-1АС. Вначале найдем С-1.

СТ = ;

С-1 = ;

Квадратичные формы

Квадратичной формой f(х1, х2,...,хn) от n переменных называют сумму, каждый член которой является либо квадратом одной из переменных, либо произведением двух разных переменных, взятым с некоторым коэффициентом: f(х1, х2,...,хn) = (aij = aji).

 

Матрицу А, составленную из этих коэффициентов, называют матрицей квадратичной формы. Это всегда симметрическая матрица (т.е. матрица, симметричная относительно главной диагонали, aij = aji).

В матричной записи квадратичная форма имеет вид f(Х) = ХТAX, где

. В самом деле

 

Например, запишем в матричном виде квадратичную форму .

Для этого найдем матрицу квадратичной формы. Ее диагональные элементы равны коэффициентам при квадратах переменных, а остальные элементы - половинам соответствующих коэффициентов квадратичной формы. Поэтому

 

Пусть матрица-столбец переменных X получена невырожденным линейным преобразованием матрицы-столбца Y, т.е. X = CY, где С - невырожденная матрица n-го порядка. Тогда квадратичная форма
f(X) = ХTАХ = (CY)TA(CY) = (YTCT)A(CY) = YT(CTAC)Y.

Таким образом, при невырожденном линейном преобразовании С матрица квадратичной формы принимает вид: А* = CTAC.

 

Например, найдем квадратичную форму f(y1, y2), полученную из квадратичной формы f(х1, х2) = 2x12 + 4х1х2 - 3х22 линейным преобразованием .

 

 

Квадратичная форма называется канонической (имеет канонический вид), если все ее коэффициенты aij = 0 при i ≠ j, т.е.
f(х1, х2,...,хn) = a11 x12 + a22 x22 + … + ann xn2 = .

Ее матрица является диагональной.

 

Теорема (доказательство здесь не приводится). Любая квадратичная форма может быть приведена к каноническому виду с помощью невырожденного линейного преобразования.

 

Например, приведем к каноническому виду квадратичную форму
f(х1, х2, х3) = 2x12 + 4х1х2 - 3х22 – х2х3.

Для этого вначале выделим полный квадрат при переменной х1:

f(х1, х2, х3) = 2(x12 + 2х1х2 + х22) - 2х22 - 3х22 – х2х3 = 2(x1 + х2)2 - 5х22 – х2х3.

Теперь выделяем полный квадрат при переменной х2:

f(х1, х2, х3) = 2(x1 + х2)2 – 5(х22 + 2* х2*(1/10)х3 + (1/100)х32) + (5/100)х32 =
= 2(x1 + х2)2 – 5(х2 – (1/10)х3)2 + (1/20)х32.

Тогда невырожденное линейное преобразование y1 = x1 + х2, y2 = х2 + (1/10)х3 и y3 = x3 приводит данную квадратичную форму к каноническому виду f(y1, y2, y3) = 2y12 - 5y22 + (1/20)y32.

 

Отметим, что канонический вид квадратичной формы определяется неоднозначно (одна и та же квадратичная форма может быть приведена к каноническому виду разными способами[1]). Однако полученные различными способами канонические формы обладают рядом общих свойств. В частности, число слагаемых с положительными (отрицательными) коэффициентами квадратичной формы не зависит от способа приведения формы к этому виду (например, в рассмотренном примере всегда будет два отрицательных и один положительный коэффициент). Это свойство называют законом инерции квадратичных форм.

Убедимся в этом, по-другому приведя ту же квадратичную форму к каноническому виду. Начнем преобразование с переменной х2:
f(х1, х2, х3) = 2x12 + 4х1х2 - 3х22 – х2х3 = -3х22 – х2х3 + 4х1х2 + 2x12 = -3(х22 +
+ 2* х2 ((1/6) х3 - (2/3)х1) +((1/6) х3 - (2/3)х1) 2) + 3((1/6) х3 - (2/3)х1) 2+ 2x12 =
= -3(х2 + (1/6) х3 - (2/3)х1)2+ 3((1/6) х3 + (2/3)х1)2+ 2x12 = f(y1, y2, y3) = -3y12 -
+3y22 + 2y32, где y1 = - (2/3)х1 + х2 + (1/6) х3, y2 = (2/3)х1 + (1/6) х3 и y3 = x1. Здесь отрицательный коэффициент -3 при y1 и два положительных коэффициента 3 и 2 при y2 и y3 (а при использовании другого способа мы получили отрицательный коэффициент (-5) при y2 и два положительных: 2 при y1 и 1/20 при y3).

 

Также следует отметить, что ранг матрицы квадратичной формы, называемый рангом квадратичной формы, равен числу отличных от нуля коэффициентов канонической формы и не меняется при линейных преобразованиях.

 

Квадратичную форму f(X) называют положительно (отрицательно) определенной, если при всех значениях переменных, не равных одновременно нулю, она положительна, т.е. f(X) > 0 (отрицательна, т.е.
f(X) < 0).

Например, квадратичная форма f1(X) = x12 + х22 - положительно определенная, т.к. представляет собой сумму квадратов, а квадратичная форма f2(X) = -x12 + 2x1х2 - х22 - отрицательно определенная, т.к. представляет ее можно представить в виде f2(X) = -(x1 - х2)2.

 

В большинстве практических ситуации установить знакоопределенность квадратичной формы несколько сложнее, поэтому для этого используют одну из следующих теорем (сформулируем их без доказательств).

Теорема. Квадратичная форма является положительно (отрицательно) определенной тогда и только тогда, когда все собственные значения ее матрицы положительны (отрицательны).

Теорема (критерий Сильвестра). Квадратичная форма является положительно определенной тогда и только тогда, когда все главные миноры матрицы этой формы положительны.

Главным (угловым) минором k-го порядка матрицы А n-го порядка называют определитель матрицы, составленный из первых k строк и столбцов матрицы А ( ).

Отметим, что для отрицательно определенных квадратичных форм знаки главных миноров чередуются, причем минор первого порядка должен быть отрицательным.

 

Например, исследуем на знакоопределенность квадратичную форму f(х1, х2) = 2x12 + 4х1х2 + 3х22.

Способ 1. Построим матрицу квадратичной формы А = . Характеристическое уравнение будет иметь вид = (2 - l)*
*(3 - l) – 4 = (6 - 2l - 3l + l2) – 4 = l2 - 5l + 2 = 0; D = 25 – 8 = 17;
. Следовательно, квадратичная форма – положительно определенная.

Способ 2. Главный минор первого порядка матрицы А D1 = a11 = 2 > 0. Главный минор второго порядка D2 = = 6 – 4 = 2 > 0. Следовательно, по критерию Сильвестра квадратичная форма – положительно определенная.

 

Исследуем на знакоопределенность другую квадратичную форму, f(х1, х2) = -2x12 + 4х1х2 - 3х22.

Способ 1. Построим матрицу квадратичной формы А = . Характеристическое уравнение будет иметь вид = (-2 - l)*
*(-3 - l) – 4 = (6 + 2l + 3l + l2) – 4 = l2 + 5l + 2 = 0; D = 25 – 8 = 17;
. Следовательно, квадратичная форма – отрицательно определенная.

Способ 2. Главный минор первого порядка матрицы А D1 = a11 =
= -2 < 0. Главный минор второго порядка D2 = = 6 – 4 = 2 > 0. Следовательно, по критерию Сильвестра квадратичная форма – отрицательно определенная (знаки главных миноров чередуются, начиная с минуса).

 

И в качестве еще одного примера исследуем на знакоопределенность квадратичную форму f(х1, х2) = 2x12 + 4х1х2 - 3х22.

Способ 1. Построим матрицу квадратичной формы А = . Характеристическое уравнение будет иметь вид = (2 - l)*
*(-3 - l) – 4 = (-6 - 2l + 3l + l2) – 4 = l2 + l - 10 = 0; D = 1 + 40 = 41;
. Одно из этих чисел отрицательно, а другое – положительно. Знаки собственных значений разные. Следовательно, квадратичная форма не может быть ни отрицательно, ни положительно определенной, т.е. эта квадратичная форма не является знакоопределенной (может принимать значения любого знака).

Способ 2. Главный минор первого порядка матрицы А D1 = a11 = 2 > 0. Главный минор второго порядка D2 = = -6 – 4 = -10 < 0. Следовательно, по критерию Сильвестра квадратичная форма не является знакоопределенной (знаки главных миноров разные, при этом первый из них – положителен).

 




Дата добавления: 2016-06-05; просмотров: 2718;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.015 сек.