Основные определения и понятия.


Пусть мы имеем числовую последовательность где

Приведем пример числовой последовательности: .

Числовой ряд – это сумма членов числовой последовательности вида

В качестве примера числового ряда можно привести сумму бесконечно убывающей геометрической прогрессии со знаменателем q = -0.5: 8-4+2-1+ .

называют общим членом числового ряда. Здесь (-16)

. Частичная сумма числового ряда – это сумма вида , где n – некоторое натуральное число. называют также n-ой частичной суммой числового ряда.

К примеру, четвертая частичная сумма ряда есть 8-4+2-1=5.

Частичные суммы образуют бесконечную последовательность частичных сумм числового ряда.

Для нашего ряда n –ая частичная сумма находится по формуле суммы первых n членов геометрической прогрессии , то есть, будем иметь следующую последовательность частичных сумм: 8,4,6,5….

Числовой ряд называется сходящимся, если существует конечный предел последовательности частичных сумм . Если предел последовательности частичных сумм числового ряда не существует или бесконечен, то ряд называется расходящимся.



Дата добавления: 2016-06-05; просмотров: 1516;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.