Вольт-амперная характеристика идеального диода (вентиля)
Основные параметры полупроводниковых приборов
1. Максимально допустимый средний за период прямой ток (IПР. СР.)
- это такой ток, который диод способен пропустить в прямом направлении.
Величина допустимого среднего за период прямого тока равна 70% от тока теплового пробоя.
По прямому току диоды делятся на три группы:
1) Диоды малой мощности (IПР.СР < 0,3 А)
2) Диоды средней мощности (0,3 <I ПР.СР <1 0 А)
3) Диоды большой мощности (IПР.СР > 10 А)
Диоды малой мощности не требуют дополнительного теплоотвода (тепло отводится с помощью корпуса диода)
Для диодов средней и большой мощности, которые не эффективно отводят тепло своими корпусами, требуется дополнительны теплоотвод (радиатор – кубик металла, в котором с помощью литья или фрезерования делают шипы, в результате чего возрастает поверхность теплоотвода. Материал - медь, бронза, алюминий, силумин)
2. Постоянное прямое напряжение (Uпр.)
Постоянное прямое напряжение – это падение напряжения между анодом и катодом при протекании максимально допустимого прямого постоянного тока.
Проявляется особенно при малом напряжении питания.
Постоянное прямое напряжение зависит от материала диодов (германий - Ge, кремний - Si)
Uпр. Ge ≈ 0.3÷0.5 В (Германиевые) Uпр. Si ≈ 0.5÷1 В (Кремниевые)
Германиевые диоды обозначают – ГД (1Д) Кремниевые диоды обозначают – КД (2Д)
3. Повторяющееся импульсное обратное максимальное напряжение (Uобр. max)
Электрический пробой идет по амплитудному значению (импульсу) Uобр. max ≈ 0.7UЭл. пробоя (10÷100 В)
Для мощных диодов Uобр. max= 1200 В.
Этот параметр иногда называют классом диода (12 класс -Uобр. max= 1200 В)
4. Максимальный обратный ток диода (Imax ..обр.)
Соответствует максимальному обратному напряжению (составляет единицы mA).
Для кремниевых диодов максимальный обратный ток в два раза меньше, чем для германиевых.
5. Дифференциальное (динамическое) сопротивление.
1. Iпр max ↑ ≤30 А
2. Uпр max ↓ ≤1.2 В
3. Uобр max ≤1600
4. Iобр max <100мА
Падение напряжения на отдельном диоде зависит от величины прямого тока и температуры и применяется в диапазоне для германиевых диодов, и для кремниевых .
Обратный ток , протекающий через диод, сильно зависит от температуры, и при некотором значении приближается к некоторому постоянному значению (с увеличением температуры происходит увеличение обратного тока).
Предельное значение температуры для германиевых диодов составляет ; кремниевых диодов .
В электрических схемах диоды включаются в цепь в прямом направлении. Е – напряжение источника питания. В практических схемах в цепь диода всегда включается какая-либо нагрузка, например, резистор. Такой режим работы диода называется рабочим. Его расчет производится по известным значениям и ВАХ диода. Расчет производится по формуле .
В формуле две неизвестных . Решение производится графически. На ВАХ диода накладывается прямая нагрузка, которая строится по 2-м точкам на осях координат при:
, т. А на рисунке.
, что соответствует т. Б.
Через эти точки проводим прямую, которая и является линией нагрузки. Координаты т. Т определяют рабочий режим диода.
Рабочий режим характеризуется следующими параметрами: - максимально допустимая мощность, рассеиваемая диодом; температурные параметры.
Рассмотрим группу полупроводниковых диодов, особенность работы которых связана с использованием нелинейных свойств p-n-перехода.
Выпрямительные диоды предназначены для преобразования переменного напряжения низкой частоты ( ) в постоянное. Они подразделяются на диоды
- малой ,
- средней
- большой мощности.
Основными параметрами, характеризующими выпрямительные диоды, являются:
- Обратный ток при некотором значении обратного напряжения;
- Максимальным током в прямом направлении;
- Падение напряжения на диоде при некотором значении прямого тока через диод;
- Барьерная емкость диода при подаче на него обратного напряжения некоторой величины;
- Диапазон частот, в котором возможна работа диода без существенного снижения выпрямленного тока;
- Рабочий диапазон температур.
В рабочем режиме через диод протекает ток, и в его электрическом переходе выделяется мощность, вследствие чего температура перехода повышается. В установившемся режиме подводимая к переходу мощность и отводимая от него должны быть равны и не превышать максимально допустимой мощности , рассеиваемой диодом, т.е . . В противном случае наступает тепловой пробой диода.
VD1 |
Rн |
VD2 |
Uн |
U2 |
U1 |
Для выпрямления высоких обратных напряжений применяются выпрямительные столбы, в которых диоды включаются последовательно.
Последовательное соединение диодов используется, если максимально допустимое обратное напряжение одного диода меньше напряжения, которое нужно выпрямить.
, где - число диодов; , - действующее значение; - коэффициент нагрузки.
, где 1.1 –коэффициент, учитывающий 10% разброс значений сопротивления по напряжению .
Из-за разброса этого параметра с тем, чтобы обратное напряжение более равномерно распределялось между диодами, диоды шунтируются резисторами с одинаковыми значениями сопротивлений, каждое из которых значительно наименьшего из обратных сопротивлений диодов, но достаточно большим, чтобы не вызвать рост обратного тока. Обычно это значение выбирается в пределах от нескольких десятков до сотен кОМ.
Например, Uн = 624В, а диод имеет следующие справочные данные: Uобр max = 400В, Iобр max = 5μА. Это параметры, которым должны удовлетворять все диоды данного типа, то есть наихудшие. Более качественный диод данного типа вполне может иметь меньший обратный ток (например, 1μА). Рассчитаем величину обратных соединений диодов:
R1 обр = 80МОм
R2 обр = 400Мом, при этом U1 обр = 104В, U2 обр = 520В> Uобр max, то есть второго, лучший диод выходит из строя.
Рассчитав по формуле = 8МОм и включив параллельно каждому из диодов резисторы, рассчитанного сопротивления, получим R\обр = 727Мом, при U\1 обр = 301В, U\2 обр = 323В< Uобр max.
Иногда в электрических схемах применяют параллельное соединение диодов для получения прямого тока, значение которого больше предельного значения тока одного диода.
Из-за разброса ВАХ диоды по току получают различную нагрузку. Поэтому для выравнивания значений токов, протекающих через них, применяют уравнительные добавочные резисторы, на которые падает излишнее напряжение. Практически параллельное соединение более 3-х диодов не применяется.
, где - среднее падение напряжения на диоде с прямым включением; Необходим ток для компенсации напряжения на втором диоде.
Например, есть диоды со следующими данными, взятыми из справочника.
Iн |
I1 |
I2 |
U |
Rн |
Iн |
Рассчитываем
Для другого, лучшего диода этого типа (на переходе падает 0,6В и 0,07 на p и n областях), а значит .
Получаем: и лучший диод выходит из строя.
и получаем . При этом
Используется редко из-за большой потери мощности и относительно невысокого КПД.
Включение выпрямительных диодов в схемах выпрямителей. Диоды в схемах выпря-
мителей включаются по одно- и двухполупериодной схемам. Если взять один диод, то ток в
нагрузке будет протекать за одну половину периода, поэтому такой выпрямитель называется
однополупериодным. Его недостаток – малый КПД.
Значительно чаще применяются двухполупериодные выпрямители.
Стабилитроны – полупроводниковые диоды, работающие на обратной ветви ВАХ в области, где изменение напряжения электрического пробоя слабо зависит от значения обратного тока и применяется для стабилизации напряжения.
Односторонний стабилитрон
Двусторонний стабилитрон
Основными параметрами стабилитронов являются:
Uст - напряжение стабилизации при номинальном значении тока;
Iст min - минимальный ток стабилизации, при котором возникает устойчивый пробой;
Iст max максимальный ток стабилизации, при котором мощность, рассеиваемая на стабилитроне, не превышает допустимого значения;
Rст - дифференциальное сопротивление, характеризующее изменение напряжения стабилизации при изменении тока: Rст =DU/DI
DU |
Uстаб |
DI |
I |
-U |
ВАХ стабилитрона ВАХ стабилитрона |
Iстаб |
При рассмотрении ВАХ стабилитрона видно, что в области электрического пробоя имеется участок, который может быть использован для стабилизации напряжения. Такой участок у кремниевых плоскостных диодов соответствует изменениям обратного тока в широких пределах. При этом до наступления пробоя обратный ток очень мал, а в режиме пробоя, в данном случае в режиме стабилизации, он становится такого же порядка, как и прямой ток. Стабилитроны изготавливаются исключительно из кремния, их также еще называют опорными диодами, т. к. в ряде случаев получаемое от них стабильное напряжение используется в качестве опорного. При обратном токе напряжение стабилизации меняется незначительно. Стабилитрон работает при обратном напряжении.
Принцип работы поясняет схема параметрического стабилизатора напряжения. Нагрузка включена параллельно стабилитрону, поэтому в режиме стабилизации, когда напряжение на стабилитроне постоянно, такое же напряжение будет и на нагрузке. Все изменение входного напряжения будет поглощаться резистором Rогр, которое еще называют балластным. Сопротивление этого резистора должно быть определенного значения и его обычно рассчитывают для средней точки. Если входное напряжение будет изменяться, то будет изменяться ток стабилитрона, но напряжение на нем, следовательно, и на нагрузке, будет оставаться постоянным.
При напряжениях меньше 7В имеет место полевой (туннельный) пробой, больше 15В - лавинный пробой, от 7 до 15В - смешанный пробой. Пробои в стабилитронах обратимы.
В схемах со стабилитроном должен быть ограничивающий резистор.
Динамическое сопротивление, определяющее качество стабилитрона: (чем меньше, тем лучше)
Статическое сопротивление:
Коэффициент качества: =0,01 – 0,05
Температурный коэффициент напряжения: ТКН = (0,2 – 0,4%)/°С
Недостаток стабилитрона: при малых токах стабилизации <3 мА увеличивается и существенную роль играют шумы.
Стабисторы - это полупроводниковые диоды, аналоги стабилитронов, но в отличие от последних у стабисторов используется не обратное напряжение, а прямое. Значение этого напряжение мало зависит от тока в некоторых пределах. Напряжение стабилизации стабисторов обычно не более 2 вольт, чаще всего 0,7 В при токе до нескольких десятков мА. Особенность стабисторов - отрицательный температурный коэффициент напряжения, т. е. напряжение стабилизации с повышением температуры уменьшается. Поэтому стабисторы применяют также в качестве термокомпенсирующих элементов, соединяя их с обычными стабилитронами, имеющими положительный ТКН при условии непревышения тока самого слаботочного из них
Напряжения при этом складываются. Согласное параллельное включение не используется. Встречное параллельное и последовательное включение позволяет получить при необходимости разные уровни ограничиваемого напряжения для разных полярностей переменного тока, протекающего через нагрузку.
Варикапы - п/п нелинейный управляемый конденсатор, сконструированный таким образом, чтобы потери в диапазоне рабочих частот были минимальными. В варикапах используется свойство p – n перехода изменять свою барьерную емкость под действием внешнего запирающего нарпяжения. Диффузионная ёмкость в связи с её зависимостью от температуры и частоты, а главное с тем, что она шунтирована низким сопротивлением прямосмещённого р-n перехода использовать не представляет возможным. Барьерная ёмкость при обратном смещении р-n перехода широко используется. В качестве варикапов можно использовать стабилитроны с напряжением ниже напряжения стабилизации, когда обратный ток еще очень мал, а обратное сопротивление очень велико.
Добротность:
Применяют в электронных устройствах для настройки частоты параллельных колебательных контуров, в избирательных усилителях и генераторах (например, с целью выбора телевизионных и радиопрограмм).
Тоннельные диоды – диоды, в основе которых использован туннельный эффект. Любой двухполюсник, имеющий на ВАХ участок отрицательного дифференциального сопротивления, может использоваться как усилитель или генератор, но не оправдали надежд, так как подвержены временной деградации.
Тоннельный эффект. Тоннельный эффект (открыт в 1958 году в Японии) проявляется на p-n переходе в вырожденных полупроводниках.
Вырожденный полупроводник – это полупроводник с очень высокой концентрацией донорной или акцепторной примеси. (Концентрация – 1024 атомов примеси на 1 куб. см. полупровод-
ника).
В вырожденных полупроводниках очень тонкий p-n переход: его ширина составляет сотые доли микрона, а напряжённость внутреннего поля p-n перехода составляет Ep-n ≈ 108 B/м, что обеспечивает очень высокий потенциальный барьер. Основные носители заряда не могут преодолеть этот потенциальный барьер, но за счёт малой его ширины как бы механически пробивают в нём тоннели, через которые проходят другие носители зарядов. Следовательно, свойство односторонней проводимости на p-n переходе при тоннельном эффекте отсутствует, а ток через p-n переход будет иметь три составляющие:
I = Iт.пр. – Iт.обр. + Iпр., где Iт.пр. – прямой тоннельный ток, за счёт прохождения зарядов через тоннели при прямом включении;
Iт.обр. – обратный тоннельный ток, тот же самый, что и прямой, но при обратном включении;
Iпр. – прямой ток проводимости. Вызван носителями заряда, преодолевающими потенциальный барьер при относительно высоком прямом напряжении.
Вольтамперная характеристика p-n перехода при тоннельном эффекте будет иметь вид, изображённый на рисунке .
На участке АВ прямой тоннельный ток уменьшается за счёт снижения потенциального барьера и в точке В он становится равным нулю, а ток проводимости незначительно возрастает. За счёт этого общий ток на участке АВ уменьшается. Особенностью тоннельного эффекта является то, что на участке АВ характеристики имеет место отрицательное динамическое сопротивление:
Тоннельный эффект применяется в тоннельных диодах, которые используются в схемах генераторов гармонических колебаний и как маломощные бесконтактные переключающие устройства.
Обращенные диоды – разновидность туннельных, не имеющие на ВАХ участки отрицательного дифференциального сопротивления, используются для выпрямления малых сигналов (за счет большой крутизны обратной диодной характеристики).
Диод Шоттки – диод, полученный путём металлизации p-проводника. У него отсутствует Сдиф, что позволяет увеличить быстродействие диода на порядок, имеет малое прямое напряжение
(Uпр < 0,3В), но имеет большие обратные токи (сотни мА) и малое пробивное напряжение (<200В).
Образование перехода Шоттки.
Переход Шоттки возникает на границе раздела металла и полупроводника n-типа, причём металл должен иметь работу выхода электрона большую, чем полупроводник.
При контакте двух материалов с разной работой выхода электронов электрон проходит из материала с меньшей работой выхода в материал с большей работой выхода, и ни при каких условиях - наоборот. Электроны из приграничного слоя полупроводника переходят в металл, а на их месте остаются некомпенсированные положительные заряды ионов донорной примеси.
В металле большое количество свободных электронов, и, следовательно, на границе металл полупроводник возникает электрическое поле и потенциальный барьер. Возникшее поле будет тормозящим для электронов полупроводника и будет отбрасывать их от границы раздела. Граница раздела металла и полупроводника со слоем положительных зарядов ионов донорной примеси называется переходом Шоттки (открыт в 1934 году).
Прямое и обратное включение диодов Шоттки.
Если приложить внешнее напряжение плюсом на металл, а минусом на полупроводник, возникает внешнее электрическое поле, направленное навстречу полю перехода Шоттки. Это внешнее поле компенсирует поле перехода Шоттки и будет являться ускоряющим для электронов полупроводника. Электроны будут переходить из полупроводника в металл, образуя сравнительно большой прямой ток. Такое включение называется прямым. При подаче минуса на металл, а плюса на полупроводник возникает внешнее электрическое поле, сонаправленное с полем перехода Шоттки. Оба этих поля будут тормозящими для электронов полупроводника, и будут отбрасывать их от границы раздела. Оба этих поля будут ускоряющими для электронов металла, но они через границу раздела не пройдут, так как у металла больше работа выхода электрона. Такое включение перехода Шоттки называется обратным.
Обратный ток через переход Шоттки будет полностью отсутствовать, так как в металле не су-
ществует неосновных носителей зарядов.
Достоинства перехода Шоттки:
- отсутствие обратного тока;
- переход Шоттки может работать на СВЧ;
- высокое быстродействие при переключении из прямого состояния в обратное и наоборот.
Недостаток – стоимость. В качестве металла обычно применяют золото.
В качестве генераторных и усилительных диодов на СВЧ могут так же использоваться лавинно-пролетные диоды и диоды Гана, которые в последнее время были вытеснены арсенид галлиевыми СВЧ полевыми транзисторами за счет их лучших шумовых и усилительных характеристик.
Эффект Гана проявляется в полупроводниках n-типа проводимости в сильных электрически
полях.
Участок ОА – линейный участок, на котором соблюдается закон Ома. Участок АВ – при срав-
нительно больших напряжённостях электрического поля уменьшается подвижность электро-
нов (показывает, как легко электроны проходят сквозь кристаллическую решётку проводника)
за счёт увеличения амплитуд колебания атомов в узлах кристаллической решётки. И за счёт
этого рост тока замедляется. Участок ВС – сильное уменьшение подвижности электронов, что
приводит к уменьшению тока. Участок CD – при очень больших напряжённостях значительно
увеличивается генерация носителей зарядов и, хотя подвижность электронов уменьшается, ток
возрастает за счёт увеличения количества зарядов.
Сущность эффекта Гана состоит в том, что если в полупроводнике создать напряжённость
электрического поля, большую Екр, но меньшую Епор, т. е. на участке ВС характеристики, то
в полупроводнике возникнут электрические колебания сверхвысокой частоты (СВЧ).
Эффект Гана применяется в диодах Гана, которые используются как маломощные генераторы
СВЧ.
Дата добавления: 2016-12-27; просмотров: 5335;