ТИПЫ И ОСНОВНЫЕ ПАРАМЕТРЫ.
Различают следующие типы автоматических электронных потенциометров и мостов:
- показывающие, регистрирующие (самопишущие);
- показывающие и регистрирующие (самопишущие).
В зависимости от назначения любая группа приборов может иметь следующие исполнения: с регулирующим устройством; с задатчиками для регулирующих устройств; с дополнительными устройствами, служащими для сигнализации, передачи информации об измеряемой величине, выдаче электрических или пневматических сигналов.
В зависимости от условий эксплуатации приборы имеют следующие исполнения: обыкновенное; обыкновенное с искробезопасной измерительной цепью; тропическое; тропическое с искробезопасной измерительной цепью.
По числу измерительных систем регистрирующих устройств приборы подразделяют на одноканальные, многоканальные, а по числу контролируемых точек - на одноточечные, многоточечные.
Устанавливают следующие классы точности приборов: 0,25; 0,5; 1,0; 1,5.
По виду регистрации приборы разделяют на следующие группы:
с регистрацией в прямоугольных координатах; с регистрацией в полярных координатах.
Разброс точек записи в многоточечных приборах не должен выходить за пределы допустимой основной погрешности записи.
В приборах должен быть обеспечен заход указателя за крайние отметки шкалы. Запись должна производиться непрерывной линией; ширина линии записи не должна превышать для приборов с шириной поля регистрации диаграммной ленты или диска, мм: до 100 - 0,8 мм, свыше 100 до 250 — 1 мм; свыше 250 - 1,2 мм.
Многоточечные регистрирующие приборы должны выпускаться с многоцветной записью.
Логометры.
Вторичными измерительными приборами для термопреобразователей сопротивления служат логометры и уравновешенные мосты. При наличии дополнительных устройств они могут осуществлять измерение, запись, регулирование и сигнализацию температуры.
Применение логометров наиболее целесообразно при измерении низких минусовых (от -200 °С) и невысоких плюсовых температур (до +500 °С), так как в данном случае они обладают большой надежностью по сравнению с милливольтметрами. Принципиальная схема пирометрического логометра показана на рис. 14.
Пирометрические логометры являются магнитоэлектрическими приборами и состоят из измерительного механизма и измерительной схемы. Измерительный механизм логометра состоит из двух жестко связанных между собой скрещенных рамок 1, вращающихся на одной оси в магнитном поле постоянного магнита 2. Воздушный зазор между полюсами магнита и сердечником 4 сделан неравномерным, в результате чего магнитная индукция в воздушном зазоре между ними будет непостоянная. Наибольшее значение магнитная индукция будет иметь у середины полюсных наконечников, наименьшее — в зазоре у краев.
Рамки логометров изготовляют из тонкой медной проволоки и соединяют таким образом, чтобы их вращающиеся моменты М1 и М2 были направлены навстречу друг другу. Подвод тока к рамкам осуществляется по трем спиральным пружинам с очень малым противодействующим моментом.
Измерительная схема логометра состоит из двух параллельных цепей (плеч), питаемых от источника постоянного тока 3.
Действие прибора основано на измерении отношения токов, проходящих в двух параллельных цепях, питаемых от постороннего источника тока, в каждую из которых включено по одной рамке. Таким образом, ток от источника питания, разветвляясь, проходит по двум цепям: через сопротивление R и обмотку одной рамки, через термопреобразователь сопротивления Rt и обмотку другой рамки. Значение этих токов обратно пропорционально сопротивлениям плеч логометра. Токи I1 и I2, проходящие по соответствующим рамкам, создают вращающие моменты M1 и М2, действующие на рамки в противоположных направлениях. При равенстве сопротивлений в плечах, токи в них будут равны, а следовательно, вращающие моменты М1 и M2 тоже равны и подвижная система находится в равновесии.
При увеличении сопротивления датчика (за счет его нагревания) величина тока в рамке R2 уменьшится, а вместе с этим уменьшится и момент, создаваемый этой рамкой М2.
Равенство моментов М1 и М2 нарушится и подвижная система логометра начнет поворачиваться в сторону действия большого момента. Таким образом, рамка R1, по которой протекает теперь больший ток, попадает в область более слабого магнитного поля, что ведет к уменьшению момента M1, а рамка R2, наоборот, начинает входить в область более сильного магнитного поля, что ведет к увеличению момента M2.
Новое равновесие подвижной системы прибора наступит, когда вращающие моменты рамок сравняются. Следовательно, различным температурам сопротивления датчика будут соответствовать различные углы поворота рамок, зависящие от отношения величины токов, проходящих в рамках.
Для компенсации изменения сопротивления соединительных проводов при колебании температуры окружающей среды предусмотрен третий провод cd.
При трехпроводной схеме сопротивления проводов а и б оказываются включенными в различные цепи измерительной схемы и изменение сопротивления этих проводов, вызванные внешними условиями, взаимно компенсируются.
Дата добавления: 2016-12-16; просмотров: 2164;