Строение и свойства аминокислот.


(Самостоятельная работа студентов)

 

Аминокислоты — соединения, в молекулах которых одновре­менно присутствуют амино- и карбоксильные группы.

Природные α-аминокислоты являются биологически активными соединениями; их классифи­кация приведена в табл. 19.

Строение аминокислот.Все α-аминокислоты* можно рассмат­ривать как результат замены атома водорода в простейшей а-аминокислоте — глицине — на тот или иной радикал R. Таким обра­зом, в соответствии с природой радикала R, называемого боко­вой цепью, -аминокислоты подразделяют на 4 группы, отлича­ющиеся гидрофильностью или гидрофобностью боковых цепей, а также способностью боковой цепи проявлять кислотные или основные свойства (см. табл. 19).

Аминокислоты рассматриваются как производные карбоновых кислот, в которых положение аминогруппы относительно карбоксильной принято указывать буквами α, β, γ и т. д., что равносильно цифрам 2, 3, 4 и т. д. соответственно. Хотя в природных объектах и обнаружено около 300 разных аминокислот, но в состав большинства пептидов и белков входят 20 наиболее часто встречающихся и поэтому важных аминокислот, причем все они α-аминокислоты.

Таким образом, в α-аминокислотах карбоксильная и аминогруппы связаны с одним и тем же углеродным атомом (Сα), у которого кроме того имеется заместитель R.

Rнеполярный углеводородный заместитель, проявляющий гидрофобные (липофильные) свойства.Это восемь α-аминокислот: аланин, валин, лейцин, изолейцин, пролин, фе-нилаланин, триптофан и метионин, труднорастворимые в воде.

Rнеионизующийся полярный заместитель, проявляющий гидрофильные свойства.Это пять α-аминокислот, которые лучше растворяются в воде: глицин, серии, треонин, аспарагин и глутамин.

Rполярный заместитель, проявляющий гидрофильные и кислотные свойства.Это четыре α-аминокислоты: аспарагиновая и глутаминовые кислоты, цистеин и тирозин.

В аспарагиновой и глутаминовой кислотах заместитель полностью отдает протон своей карбоксильной группы в растворах с рН = 7 и поэтому, в этих условиях несет отрицательный заряд.

 

Таблица Важнейшие α-аминокислоты и их

кислотно-основные характеристики

Название Формула Сокращение pI
русское между-народное
α-Аминокислоты с неполярным (гидрофобным) заместителем R
Аланин Ала Ala 2,3 9,7   6,0
Валин (незаменимая)   Вал Val 2,3 9,6 6,0
Лейцин (незаменимая)   Лей Leu 2,4 9,6 6,0
Изолейцин (незаменимая   Иле Ile 2,4 9,7 6,1
Пролин Про Pro 2,0 10,6 6,3
Фенилаланин (незаменимая) Фен Phe 1,8 9,1 5,5
Триптофан (незаменимая) Три Trp 2,4 9,4 5,9
Метионин (незаменимая)   Мет Met 2,3 9,2 5,8
α-Аминокислоты с полярным (гидрофильным) заместителем R
Глицин   Глу Gly 2,3 9,6 6,0
Серин   Сер Ser 2,2 9,3 5,7
Трионин (незаменимая)   Тре Thn 2,6 10,4 6,5
Аспарагин Асн Asn 2,0 9,8 5,4
Глутамин   Глн Gln 2,2 9,1 5,7
  α-Аминокислоты - кислотные
Аспарагиновая кислота Асп Asp 2,1 9,8 3,9 (COOH) 3,0
Глутаминовая кислота Глу Glu 2,2 9,7 4,3 (COOH) 3,2
Цистеин Цис Cys 1,7 10,8 8,3 (SH) 5,0
Тирозин тир Tyr 2,2 9,1 10,1 (OH) 5,7
α-Аминокислоты - основные
Лизин (незаменимая) Лиз Lys 2,2 9,0 + 10,5 (NH3) 9,8
Аргинин Арг Arg 2,2 9,0 12,5 гуанидин 10,8
Гистидин Гис His 1,8 9,2 6,0 имидазол 7,6

Стереохимия природных α-аминокислот характеризуется тем, что все они кроме глицина имеют асимметрический атом углеро­да (атом, связанный и с амино-, и с карбоксильной группой), конфигурация которого может быть отождествлена с конфигура­цией L-глицеринового альдегида путем цепи химических превра­щений:

* За исключением нейтральной гидрофобной аминокислоты пролина (L-пирролидин-α-карбоновой кислоты).

При этом превращения либо не должны затрагивать хиральный центр, либо реакции должны протекать строго стереоспецифично. Следовательно, все природные α-аминокислоты являются L-энантиомерами.

Конфигурация асимметрического центра аминокислот опреде­ляет биологические свойства как самих аминокислот, так и олиго- и полимерных соединений, мономерами которых служат остат­ки аминокислот (эти соединения называют пептидами)

Свойства аминокислот.Аминокислоты представляют собой бес­цветные кристаллические вещества с довольно высокими темпе­ратурами плавления (более 230 °С). Большинство кислот хорошо растворимы в воде и практически не растворимы в спирте и диэтиловом эфире, что указывает на солеобразный характер этих веществ. Специфическая растворимость аминокислот обусловлена наличием в молекуле одновременно аминогруппы (имеющей ос­новный характер) и карбоксильной группы (характеризующейся кислотными свойствами), благодаря чему аминокислоты принад­лежат к амфотерным электролитам (амфолитам). В водных раство­рах и твердом состоянии аминокислоты существуют только в виде внутренних солей — цвиттер-ионов.

Кислотно-основное равновесие для аминокислоты может быть описано следующим образом:

 

Если к раствору аминокислоты приложено электрическое поле, то в зависимости от показателя рН раствора ионы аминокислоты будут перемещаться по-разному: в кислой среде при рН < 7 ам­монийные ионы аминокислот перемещаются к отрицательному полюсу (катоду), а в щелочной среде при рН > 7 карбоксилат-ионы — к положительному полюсу (аноду). Значение рН, при котором молекула аминокислоты электронейтральна, называют изоэлектрической точкой и обозначают рI. При значении рН, рав­ном показателю рI, молекула аминокислоты в электрическом поле не перемещается. Изоэлектрическую точку определяют по соот­ношению

pI=0.5(pKa1+pKa2)

 

Реакции с участием только аминогруппы.Наличие в молекуле одновременно амино- и карбоксильной группы отражается и на поведении аминокислот в тех реакциях, в которых участвует только одна из двух функциональных групп. Аминогруппа, которая в ами­нах проявляет себя как нуклеофил, в биполярном ионе полно­стью лишена нуклеофильности из-за протонирования, поэтому ни реакция алкилирования по Гофману, ни ацилирование, свойственные аминам, не имеют места в случае аминокислот. Эти ре­акции могут происходить только при условии предварительного депротонирования аминогруппы, что достигается использовани­ем реакционной среды с высоким значением рН, при которых цвиттер-ион полностью превращен в карбоксилат-анион.

Рассмотрим основные реакции с участием только аминогруп­пы аминокислот.

1. Алкилирование осуществляют, действуя на полученные соли аминокислот алкилгалогенидами в присутствии оснований (как органических, так и неорганических).

2. Ацилирование также требует предварительного превращения цвиттер-иона в карбоксилат-анион и успешно протекает при на­личии в реакционной среде эквивалента основания (основание необходимо для связывания выделяющегося при ацилировании кислого продукта — галогеноводорода или карбоновой кислоты):

 

или

и далее

3. Образование оснований Шиффа (как типичная реакция ами­нов) свойственно и аминокислотам; наиболее часто используют реакции аминокислот с бензальдегидом:

На образовании оснований Шиффа основана реакция иденти­фикации аминокислот, известная как «нингидриновая проба», широко применяемая для визуализации зон аминокислот (возни­кает интенсивное сине-фиолетовое окрашивание) при их хроматографическом и электрофоретическом разделении, а также для количественного определения содержания аминокислот в раство­рах:

4. Дезаминирование аминокислот, как и всякого первичного амина, протекает при действии на аминокислоты азотистой кис­лоты:

Эта реакция лежит в основе метода определения содержания азо­та и количества аминогрупп в аминокислотах (метод Ван-Слайка).

Биосинтез аминокислот. Все природные α-аминокислоты делят на незаменимые (валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин), которые посту­пают в организм только из внешней среды, и заменимые, синтез которых происходит в организме.

Биосинтез α-аминокислот может происходить на основе не аминокислот, например по реакции восстановления -кетокислот под действием НАДН:

Реакция стереоспецифична вследствие стереоспецифичности НАДН.

В качестве исходных веществ при биосинтезе аминокислот мо­гут выступать другие аминокислоты. Например, реакция трансаминирования (переаминирования) является основной при син­тезе α-аминокислот в организме:

 

Катализаторами и участниками этого процесса являются фер­менты (аминотрансферазы) и кофермент пиридоксальфосфат, который служит переносчиком аминогруппы.

§ 8.2. Пептиды.

 

Амино- и карбоксильные группы аминокислот могут реагировать друг с другом, даже если они находятся в одной мо­лекуле. Еще более реальным является образование межмолекуляр­ной амидной связи. Амиды, образовавшиеся в результате взаимо­действия некоторого числа аминокислот, называют пептидами. В зависимости от числа аминокислотных остатков различают ди-, три-, тетра-, пентапептиды и т.д. При этом пептиды молекуляр­ной массой не более 10 000 называют олигопептидами; молекуляр­ной массой более 10 000 — полипептидами, или белками. Амидные связи в составе пептидов называют пептидными.

Пептидная группировка характеризуется рядом свойств.

1. Пептидная группировка имеет жесткую планарную структу­ру, т. е. все атомы, входящие в нее, располагаются в одной плос­кости.

2. Атомы кислорода и водорода пептидной группировки при­родных пептидов и белков находятся в транс-положении по отно­шению к связи С—N, так как при транс-конфигурации замести­телей боковые цепи оказываются наиболее удалены друг от друга, что важно для стабилизации структуры белковой молекулы.

3. Пептидная группа представляет собой трехцентровую ρ,π-сопряженную систему, которая образуется вследствие делокализации электронной плотности между атомами кислорода, углерода и азота. Длины связей С—О и С—N оказываются практически оди­наковыми.

4. Пептидная связь устойчива при температуре 310 К в средах, близких к нейтральной (физиологические условия). В кислой и щелочной средах связь подвергается гидролизу. В условиях орга­низма гидролиз происходит ферментативно.

5. Дополнительные, как правило, нековалентные связи между пептидной группой и боковыми цепями обусловливают существо­вание различных конформаций белковой молекулы. Например, внутримолекулярные водородные связи стабилизи­руют вторичную структуру белка.

6. Пептидная группировка может существовать в двух резонан­сных формах (кетонной и енольной):

Эти свойства пептидной группировки определяют строение полипептидной цепи:

 

Полипептидная цепь состоит из регулярно повторяющихся уча­стков, образующих остов молекулы, и вариабельных участков — боковых радикалов аминокислотных остатков. Началом полипеп­тидной цепи считают конец, несущий свободную аминогруппу (N-конец), а заканчивается полипептидная цепь свободной кар­боксильной группой (С-конец).

 

Как правило, при изображении формулы пептида N-конец располагают слева, а С-конец — справа:

Называют пептид, последовательно перечисляя, начиная с N-конца, названия аминокислот, входящих в пептид; при этом суффикс «ин» заменяют на суффикс «ил» для всех аминокислот, кроме С-концевой.

Для описания строения пептидов применяют не традицион­ные структурные формулы, а сокращенные обозначения, позво­ляющие сделать запись более компактной.

Понятие «строение пептида» (равно как и «структура белка») включает в себя следующие характеристики:

1) общее число аминокислотных остатков;

2) перечень аминокислот, входящих в состав пептида, и ука­зание количества аминокислотных остатков каждого вида (этот параметр называют аминокислотным составом пептида или белка);

3) последовательность связывания аминокислот друг с другом (этот параметр называют аминокислотной последовательностью; он отражает так называемую первичную структуру пептида или бел­ка); последовательность записывают слева направо от N-конца к С-концу.



Дата добавления: 2019-09-30; просмотров: 371;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.015 сек.