Передача нервного импульса


Основной единицей нервной системы является нейрон. Нейрон – нервная клетка, функции которой состоит в распространении и интерпретации информации.

Элементарным проявлением активности служит возбуждение, происходящее в результате изменения полярности мембраны нервной клетки. Фактически нервная деятельность является результатом процессов, происходящих в синапсах – в местах контакта двух нейронов, где происходит передача возбуждения от одной клетки к другой. Передача осуществляется с помощью химических соединений – нейромедиаторов. В момент возбуждения значительное количество молекул высвобождается в синаптическую щель (пространство, разделяющее мембраны контактирующих клеток) диффундирует через нее и связываются с рецепторами на поверхности клеток. Последнее и означает восприятие сигнала.

Специфичность взаимодействия нейромедиаторов в рецепторах определяется строением как рецепторов, так лигандов. Основой действия большинства химических веществ на центральную нервную систему является их способность изменять процесс синаптической передачи возбуждения. Чаще всего эти вещества выступают в роли агонистов (активаторы), они повышают функциональную активность рецепторов, или антагонистов (блокаторы). В синапсах нервно-мышечных соединений основным медиатором является хлорацетилхолин. Если нервные узлы расположены вблизи спинного мозга медиатором является норадреналин.

В большинстве возбужденных синапсах в мозге млекопитающих выделяемым нейромедиатором является L‑глутаминовая кислота (1‑аминопропан‑1,3‑дикарбоновая кислота).

Это один из медиаторов относящийся к классу возбуждающих аминокислот, а γ‑аминомасляная кислота (ГАМК), как и глицин, являются тормозящим медиатором центральной нервной системы. Важнейшие физиологические функции γ‑аминомасляной кислоты – регуляция возбудимости мозга и участие в формировании поведенческих реакций, например, подавление агрессивного состояния.

γ‑аминомасляная кислота образуется в организме путем декарбоксилирования L‑глутаминовой кислоты под действием фермента глутаматдекарбоксилазы.

Основной путь метаболического превращения γ‑аминомасляной кислоты в нервной ткани – это трансаминирование с участием α‑кетоглутаровой кислоты. Катализатором в этом случае служит фермент ГАМК-Т (ГАМК-трансамилаза). Трансаминирование приводит к глутаминовой кислоте, метаболическому предшественнику γ‑аминомасляной кислоты и янтарному полуальдегиду, превращающегося затем в ГОМК (γ‑оксимасляная кислота), которая является антигипоксическим средством.

Именно этот процесс инактивации γ‑аминомасляной кислоты стал целевым для исследований, направленных на накопление медиаторов в тканях мозга, для усиления его нейротормозной активности.

Считается, что 70% центральных синапсов предназначенных для стимуляции центральной нервной системы используют в качестве медиатора L‑глутаминовую кислоту, а вот избыточное накопление его приводит к необратимым повреждениям нейронов и тяжелым патологиям типа болезни Альцгеймера, инсульта и т.д.

Глутаматные рецепторы делятся на два основных типа:

1. ионотропные (i Gly Rs)

2. метаботропные (m Gly Rs)

Ионотропные глутаматные рецепторы образуют ионные каналы и непосредственно передают электрический сигнал от нервных клеток за счет возникновения ионного тока.

Метаботропные глутаматные рецепторы переносят электрический сигнал не непосредственно, а через систему вторичных мессенджеров – молекулы или ионы, которые в итоге вызывают изменения конфигурации белков, участвующих в специфических клеточных процессах.

Ионотропные глутаматные рецепторы – семейство глутаматных рецепторов, связанных с ионными каналами. Включает в себя два подтипа, различающихся по фармакологическим и структурным свойствам. Название этих подтипов образованы от названий наиболее селективных лигандов-агонистов к каждому из соответствующих рецепторов. Таковыми являются N‑метил‑D‑аспарагиновая кислота (NMDA), 2‑амино‑3‑гидрокси‑5‑метилизоксазол‑4‑ил‑пропановая кислота (AMPA), каиновая кислота

 

Таким образом различают два подтипа ионотропных глутаматных рецепторов: NMDA и NMPA (каинатный подтип).

NMDA наиболее изученный из всех глутаматных рецепторов. Исследования действия соединений различных классов показало наличие в нем несколько сайтов регуляций – это область специального связывания с лигандами. Рецептор NMDA имеет два аминокислотных сайта: один для специфического связывания глутаминовой кислоты, другой для специфического связывания глицина, являющиеся коагонистами глутамата. Иными словами, для открытия ионного канала необходима активация обоих (глутаминового и глицинового) связывающих центров. Канал сопряженный с рецепторами NMDA проницаем для катионов Na+, K+, Ca2+ и именно с увеличением внутриклеточной концентрации ионов кальция связывают гибель нервных клеток при заболеваниях, сопровождающихся гипервозбуждением рецептора NMDA.

В канале рецептора NMDA существует сайт специфического связывания двухвалентных ионов Mg2+ и Zn2+, которые оказывают ингибирующее действие на процессы синаптического возбуждения рецепторов NMDA. На рецепторе NMDA присутствуют и другие аллостерические модуляторные сайты, т.е. такие, взаимодействие с которыми не оказывает прямого действия на основную медиаторную передачу, но способны влиять на функционирование рецептора. Таковыми являются:

1) Фенциклидиновый сайт. Он расположен в ионном канале, а действие фенциклидина заключается в селективном блокировании открытого ионного канала.

2) Полиаминовый сайт, расположенный на внутренней стороне постсинаптической мембраны нейрона и способный связывать некоторые эндогенные полиамины, например, спермидин, спермин.

Рассмотрим химию соединений активных по отношению к рецепторам NMDA.



Дата добавления: 2019-09-30; просмотров: 494;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.