Частные случаи пересечения поверхностей вращения второго порядка

Частные случаи пересечения поверхностей вращения второго порядка

Пересечение соосных поверхностей вращения.

 

1. Две соосные поверхности вращения пересекаются по окружностям, плоскости которых перпендикулярны оси вращения: Г Ç D = m; n - окружности (рис. 3-48).

Рис. 3-48

2. Если центр сферы находится на оси поверхности вращения, то сферапересечёт эту поверхность по окружностям, плоскости которых перпендикулярны оси вращения: Ф Ç L = m; n - окружности (рис. 3-49).

Рис. 3-49

 

Теорема Монжа

 

Если две поверхности вращения второго порядка описаны около третьей поверхности вращения второго порядка, или вписаны в неё, то линия их пересечения распадается на две плоские кривые второго порядка. Причём, плоскости кривых проходят через прямую, соединяющую точки двойного соприкосновения.

На рис. 3-50 теорема Монжа проиллюстрирована пересечением двух конусов S и Г, в которые вписана сфера Ф. Чтобы вписать сферу, проводим перпендикуляры к очерковым образующим конуса Г(Г2) из точки О2: О2Р2 = О2К2 - радиус сферы (рис. 3-50а). Точки М и N (рис. 3-50б) - это точки, в которых касаются все три поверхности. В результате получаются два эллипса а и b, которые проходят через точки М и N (рис. 3-50в). На П1 эти эллипсы построены по принадлежности конусу Г (построения не показаны).

Рис. 3-50а

Рис. 3-50б

Рис. 3-50в

Как Вы думаете?

1. Всегда ли при решении позиционных задач совпадают случаи расположения геометрических фигур относительно плоскостей проекций и соответствующие алгоритмы решения?

2. По какому алгоритму Вы будете решать задачу , представленную на рис. 51?

Рис. 3-51

Ф Ç АВСК = ?

Ф ^^ П2; АВСК ^^ П2.

Проанализируйте расположение цилиндра и плоскости относительно плоскостей проекций и обоснуйте выбор алгоритма решения. Решите задачу.

 

 

Выводы:

1. Все главные позиционные задачи делятся на две:

1ГПЗ - пересечение линии с поверхностью (плоскостью);

2ГПЗ - пересечение поверхностей (плоскостей).

2. Выбор алгоритма решения зависит от расположения фигур относительно плоскостей проекций. Существует три случая расположения пересекающихся фигур относительно плоскостей проекций:

- обе фигуры проецирующие - задача решается по 1 алгоритму,

- одна фигура проецирующая, вторая непроецирующая - задача решается по 2 алгоритму,

- обе фигуры непроецирующие - задача решается по 3 алгоритму.

3. Бывает, что случаи расположения фигур относительно плоскостей проекций и алгоритм решения не совпадают. Это случается тогда, когда обе пересекающиеся фигуры являются проецирующими, но относительно одной и той же плоскости проекций, такие задачи решаются по второму алгоритму (например, рис. 3-51).

4. Решение считается выполненным тогда, когда определена видимость общих элементов и пересекающихся фигур.

 

 






Дата добавления: 2016-05-31; просмотров: 1795; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2018 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.008 сек.