Классификация стекол по назначению


 

Неорганические стекла классифицируются по виду стеклообразующего вещества, виду модификаторов, технологии изготовления и назначению.

По виду стеклообразующего вещества неорганические стекла делятся на силикатные (SiO2), алюмосиликатные (А1203–SiO2), боросиликатные 203–SiO2), алюмоборосиликатные (А1203–В205–SiO2), алюмофосфатные (А1203–Р205), халъкогенидные (например, Аs313021Те180), галогенидные и другие стекла.

По виду модификаторов различают щелочные, бесщелочные и кварце­вые неорганические стекла. Прочность щелочных стекол под действием влаги уменьшается вдвое, так как вода выщелачивает стекло. При этом, образуются щелочные растворы, которые расклинивают стекло, вызы­вая появление микротрещин в поверхностном слое.

По технологии изготовления неорганическое стекло может быть по­лучено выдуванием, литьем, штамповкой, вытягиванием в листы, трубки, волокна и др. Стекло выпускается промышленностью в виде готовых изделий, заготовок и отдельных деталей.

По назначению неорганические стекла делятся на техническое, строи­тельное и бытовое (стеклотара, посудное, бытовое и др.).

Техническое стекло по области применения делится на электротехническое, транспортное; оптическое, светотехническое, тер­мостойкое, тугоплавкое, легкоплавкое, химико-лабораторное и др.

Электротехническое стекло. Высокие значения удельного электросопротивления, большая электрическая прочность (16–50 кВ/мм), низкие зна­чения диэлектрических потерь (tgδ=0,0018–0,0175) и сравнительно высокая диэлектрическая проницаемость (ε=3,5–16), которая повышается при увели­чении концентрации РbО или ВаО. При нагреве в интервале температур 200–400 °С удельное электросопротивление уменьша­ется в 108–1010 раз, что связано с увеличе­нием подвижности щелочных ионов, и стекло теряет свои изолирующие свой­ства. Оксиды тяжелых металлов – свинца и бария уменьшают подвижность ионов и снижают потери.

При впаивании металла в стекло, при сва­ривании стекол разного состава в стекле появляются термические напряжения из-за различия температурных коэффициентов линейного расширения. Если температур­ные коэффициенты обоих материалов близки, то спаи стекла с материалом назы­ваются согласованными спаями, а если раз­личны – несогласованными спаями.

Как диэлектрик используют для колб ос­ветительных ламп и радиоламп, в элект­ровакуумных устройствах, для изоляторов, для герметизации интегральных схем. Так, в виде тонкой (до 3–4 мкм) пленки стек­ло используют в качестве прочной, нетрескающейся и теплостойкой изоляции на металлических проводах и термопарах. Халькогенидное стекло используется для герметизации полупроводниковых при­боров. Электропроводящие (полупровод­никовые) стекла: халькогенидные и ок­сидные ванадиевые – находят широкое применение в качестве термисторов, фо­тосопротивлений.

Электротехнические стекла в зависимости от величины температурного коэффици­ента линейного расширения разделяются на платиновые (С89-2), молибденовые (С49-1) и вольфрамовые (С38-1). Каждая группа стекол используется для согласо­ванных спаев с Мо, W и сплавами Fe-N. В марке электротехнического стекла ука­зывается значение температурного коэф­фициента линейного расширения.

Транспортное стекло. В машиностроении эффективно применя­ется как конструкционный материал при условии нейтрализации хрупкости, что достигается его закалкой, как правило, в воздушном потоке.

Специфическими свойствами стекол явля­ются их оптические свойства: светопрозрачность, отражение, рассеяние, поглоще­ние и преломление света. Коэффициент преломления таких стекол составляет 1,47–1,96, коэффициент рассеяния нахо­дится в интервале 20–71.

Разновидностями транспортного стекла яв­ляются триплексы и термопан, применяе­мые для остекления в транспортных сред­ствах, скафандрах.

Триплексы – композиционный материал, получаемый из двух листов закаленного силикатного (или органического) стекла толщиной 2–3 мм, склеенных прозрачной эластичной полимерной (обычно из поливинилбутираля) пленкой. При разруше­нии триплекса образовавшиеся неострые осколки удерживаются на полимерной пленке.

Термопан – трехслойное стекло, состоящее из двух листов закаленных стекол и воз­душного промежутка между ними. Эта воздушная прослойка обеспечивает тепло­изоляцию.

Оптическое и светотехническое стекло. Оптические свойства стекол зависят от их окраски, которая определяется химиче­ским составом стекол, а также от состоя­ния поверхности изделий. Оптические изделия должны иметь изотропную, сво­бодную от напряжений структуру, кото­рую получают отжигом, и гладкие полиро­ванные поверхности.

Обычное неокрашенное листовое стекло пропускает до 90%, отражает примерно 8%и поглощает около 1% видимого и частично инфракрасного света; ультра­фиолетовое излучение поглощается почти полностью. Кварцевое стекло является прозрачным для ультрафиолетового из­лучения. Светорассеивающие стекла со­держат в своем составе фтор. Стекло с большим содержанием РbО поглощает рентгеновские лучи.

Оптические стекла, применяемые в оп­тических приборах и инструментах, под­разделяют на кроны, отличающиеся ма­лым преломлением (nд=1,50), и флинты (nд=1,67) – с высоким содержанием ок­сида свинца.

Термостойкое и тугоплавкое стекло.

«Пирекс» – термостойкое стекло на осно­ве SiO2 (80,5%) с повышенным содер­жанием В203 (12%), Na20 (4%), а также оксидами алюминия, калия и магния.

«Мазда» – тугоплавкое стекло на основе SiO2 (57,6%) с оксидами алюминия (25%), кальция (7,4%), магния (8%) и калия. «Пирекс» и «Мазда» используются для из­готовления изделий, использующихся при повышенных температурах эксплуатации: оболочки термометров, смотровые стекла и др.

Легкоплавкое стекло. Эти стекла изготовляют на основе РbО (70%) с добавлением В2О3 (20%) или В203 (68,8%) с добавлением ZnО (28,6%) и Na2O (2,6%); используются для изготовления эмалей, глазури и припоев для спаи­вания стекла.

Строительное стекло выпускают следующих видов: листо­вое, облицовочное и изделия и конструкции из стекла.

Листовое стекло изготавливают из стеклянной массы, в состав которой входят 71–73% SiO2, 13,5–15% Na2O, до 10% СаО, до 4% МgО и до 2% А1203. Масса 1 м2 листового стекла 2–5 кг. Светопропускание – не ме­нее 87%.

Листовое стекло вырабатывают трех сортов и в зависимости от толщины шести размеров (марок): 2; 2,5; 3; 4; 5 и 6 мм. Сорт листового стекла опреде­ляется наличием дефектов, к которым относятся: полосность – неровность на поверхности; свиль – узкие нитевидные полоски; пузыри – газовые включения и др. Ширина листов стекла 250–1600 мм, длина 250–2200 мм.

Промышленностью вырабатываются также специальные виды листового стекла: витринное (полированное), теплопоглощающее, увиолевое (пропускаю­щее 25–75% ультрафиолетовых лучей), закаленное, архитектурно-строи­тельное и др.

Листовое стекло – основной вид стекла, используемый для остекления оконных и дверных проемов, витрин, наружной и внутренней отделки зданий.

Облицовочное стекло применяют для отделки фасадов и внутренних помещений здания. К потребительским свойствам такого стекла относятся высокая декоративность (яркие цвета, блестящая поверхность), большая атмосферостойкость и долговечность. К группе облицовочных стекол отно­сятся:

стемалит – листовой строительный материл из закаленного полирован­ного (толщиной 6–12 мм) стекла, покрытого с внутренней стороны непроз­рачной (глухой) керамической краской. Покрытие защищается со стороны помещения тонким слоем алюминия, нанесенным в вакууме. Применяется для внутренней и наружной облицовки зданий;

марблит – листовой строительный материал толщиной 12 мм из цвет­ного глушеного стекла с полированной лицевой поверхностью и рифленой тыльной, может имитировать мрамор;

стеклянная эмалированная плитка – изготавливается из отходов листо­вого стекла (стеклянная эмаль), наплавляемых на поверхность стекла, наре­занного на требуемые размеры (150x150, 150x70 мм при толщине 3–5 мм);

стеклянная мозаика – ковровая мозаика в виде мелких квадратных пли­ток (20x20 или 25x25 мм) из непрозрачного (глушеного) цветного стекла, выложенных в однотонные или мозаичные ковры;

смальта – кубики или пластинки толщиной 10 мм из цветной глушеной стекломассы, полученные отливкой или прессованием; применяется для изготовления мозаик.

Изделия и конструкции из стекла. К наиболее распростра­ненным изделиям и конструкциям из стекла в строительной промышлен­ности относятся:

стеклоблоки – полые блоки из двух отформованных половинок, сваренных между собой. Светопропускание–не менее 65%, светорассеяние–около 25% (светорассеяние повышают рифлением внутренней стороны блоков), теплопроводность – 0,4 Вт/(м·К). Применяются для заполнения световых проемов в наружных стенах и устройства светопрозрачных покрытий и пе­регородок;

стеклопакеты – два-три листа стекла, соединенных по периметру ме­таллической рамкой (обоймой), между которыми создана герметически замкнутая воздушная полость. Применяются для остекления зданий;

стеклопрофилит – крупногабаритные строительные панели из про­фильного стекла, изготовляемые методом непрерывного проката коробча­того, таврового, швеллерного и полукруглого профилей. Стеклопрофилит может быть армированным и неармированным, бесцветным и цветным. Применяется для устройства светопрозрачных ограждений зданий и соору­жений.

Стекловолокно – волокнистый материал, получаемый из расплавлен­ной стекломассы. Наиболее широко применяются бесщелочное алюмо-боросиликатное Е-стекло, а также высокопрочное стекло на основе ок­сидов: SiO2, А1203, МgO. Диаметр стекловолокна колеблется от 0,1 до 300 мкм. Форма сечения может быть в виде крута, квадрата, прямо­угольника, треугольника, шестиугольника. Выпускаются и полые во­локна. По длине волокно делится на штапельное (от 0,05 до 2–3 м) и непрерывное. Плотность стекловолокна 2400–2600 кг/м3. Прочность элементарных стеклянных волокон в несколько десятков раз выше объем­ных образцов стекла: прочность на растяжение достигает 1500–3000 МПа для непре­рывных волокон диаметром 6–10 мкм. Стеклово­локно имеет высокие тепло-, электро- и звукоизоляционные свойства, оно термо- и химически стойко, негорюче, не гниет.

Поверхность стеклянных волокон при транспортировке и различных видах переработки замасливают для предотвращения истирания, так как от состояния поверхности волокон зависит их прочность. Из стеклово­локна изготавливают стекловату, ткани и сетки, а также нетканые ма­териалы в виде жгутов и холстов, стекломатов.

Стекловата – материал из стеклянных волокон, диаметр которых для изготовления теплоизоляционных изделий не должен превышать 21 мкм. Структура ваты должна быть рыхлой – количество прядей, состоящих из параллельно расположенных волокон, не более 20% по массе. Плотность в рыхлом состоянии не должна быть более 130 кг/м3. Теплопроводность – 0,05 Вт/(м·К) при 25 °С. Стеклянную вату из непрерывного волокна применяют для изготовления теплоизоляционных материалов и изделий при тем­пературах изолируемых поверхностей от -200 до +450°С.

Стекловата из супертонкого волокна имеет плотность 25 кг/м3, тепло­проводность 0,03 Вт/(м·К), температурах эксплуатации от -60 до +450°С, звукопоглощение 0,65–0,95 в диапазоне частот 400–2000 Гц. Стек­ловата из супертонкого волокна, а также изделия на ее основе используют­ся в строительстве в качестве звукоизоляционного материала.

Стекломаты (АСИМ, АТИМС, АТМ-3) – материалы, состоящие из стекловолокон, расположенных между двумя слоями стеклоткани или стеклосетки, простеганной стеклонитками. Они применяются при температу­рах 60–600°С в качестве армирующих элементов в композиционных мате­риалах.

Стеклорубероид и стекловойлок – рулонные материалы, получаемые путем двухстороннего нанесения битумного (битумно-резинового или битумно-полимерного) вяжущего вещества, соответственно, на стеклово-локнистый холст или стекловойлок и покрытия с одной или двух сторон сплошным слоем посыпки. Сочетание биостойкой основы и пропитки с повышенными физико-механическими свойствами позволяет достичь дол­говечности для стеклорубероида около 30 лет.

В зависимости от вида посыпки, предотвращающей слипание при хра­нении в рулонах, и назначения стеклорубероид выпускают следующих ма­рок: С-РК (с крупнозернистой посыпкой), С-РЧ (с чешуйчатой посыпкой) С-РМ (с пылевидной или мелкозернистой посыпкой). Применяют стекло­рубероид для верхнего и нижнего слоев кровельного ковра и для оклеенной гидроизоляции.

Гидростеклоизол – гидроизоляционный рулонный материал, предназна­ченный для гидроизоляции железобетонных обделок туннелей (марка Т), пролетных строений мостов, путепроводов и других инженерных сооружений (марка М).

Гидростеклоизол состоит из стеклоосновы (тканой или нетканой сет­чатки, дублированной стеклохолстом), покрытой с обеих сторон слоем би­тумной массы, в которую входят битум, минеральный наполнитель (около 20%) с молотым тальком, магнезитом, а также пластификатором. Отличается помимо высокой водонепроницаемости хорошими прочностными показа­телями при растяжении в продольном направлении. Он выдерживает раз­рывную нагрузку при высшей категории качества 735 Н. Теплостойкость – 60–65 °С, температура хрупкости – от -20 до -10°С.

Гидростеклоизол наклеивают без применения мастик – равномерным плавлением (например, используя пламя газовой горелки) его поверхности.

Пеностекло (ячеистое стекло) – ячеистый материал, получаемый спе­канием тонко измельченного стекольного порошка и порообразователя. Вырабатывают из стекольного боя либо используют те же сырьевые ма­териалы, что и для производства других видов стекла: кварцевый песок, известняк, соду и сульфат натрия. Порообразователями могут быть кокс и известняк, антрацит и мел, а также карбиды кальция и кремния, выделяющие при спекании углекислый газ, образующий поры.

Пеностекло имеет специфическое строение – в материале стенок крупных пор (0,25–0,5 мм) содержатся мельчайшие микропоры, что обусловливает малую теплопроводность (0,058–0,12 Вт/(м·К)) при доста­точно большой прочности, водостойкости и морозостойкости. Порис­тость различных видов пеностекла составляет 80–95%; плотность 150–250 кг/м3; прочность 2–6 МПа. Обладает высокими тепло- и звукоизоляционными свойствами. Пеностекло – несгораемый матери­ал с высокой (до 600 °С) теплостойкостью. Легко обрабатывается (пи­лится, шлифуется); оно хорошо склеивается, например, с цементными материалами.

Щиты из пеностекла применяют для теплоизоляции ограждающих кон­струкций зданий (стен, перекрытий, кровель и др.), в конструкциях холо­дильников (изоляция поверхностей с температурой эксплуатации до 180 °С), для декоративной отделки интерьеров. Из пеностекла с открытыми порами изготовляют фильтры для кислот и щелочей.

Стеклопор получают путем фануляции и вспучивания жидкого стекла с минеральными добавками (мелом, молотым песком, золой ТЭС и др.). Вы­пускается трех марок: СЛ ρ0=15–40 кг/м3, λ=0,028–0,035 Вт/(м·К); Л ρ0=40–80 кг/м3, λ=0,032–0,04 Вт/(м·К); ρ 0=80–120 кг/м3, λ=0,038–0,05Вт/(м·К).

В сочетании с различными связующими веществами стеклопор исполь­зуют для изготовления штучной, мастичной и заливочной теплоизоляции. Наиболее эффективно применение стеклопора в ненаполненных пенопластах, так как введение его в пенопласт позволяет снизить расход полимера и значительно повысить огнестойкость теплоизоляционных изделий.

Армированное стекло – конструкционное изделие, получаемое мето­дом непрерывного проката неорганического стекла с одновременным закатыванием внутрь листа металлической сетки из отожженной хро­мированной или никелированной стальной проволоки. Это стекло имеет предел прочности при сжатии 600 МПа, повышенную огнестой­кость, безосколочно при разрушении, светопропускаемость – более 60%. Может иметь гладкую, кованую или узорчатую поверхность, быть бесцветным или цветным.

Армированное стекло применяют для остекления фонарей верхнего света, оконных переплетов, устройства перегородок, лестничных мар­шей и др.

Ситаллы

 

Ситаллы(стеклокристаллические материалы) – искусственный ма­териал на основе неорганического стекла, получаемый путем полной или частично управляемой кристаллизации в них.

Термин «ситаллы» образован от слов: «стекло» и «кристаллы». По струк­туре и технологии получения ситаллы занимают промежуточное положение между обычным стеклом и керамикой. От неорганического стекла они от­личаются кристаллическим строением, а от керамических материалов – более мелкозернистой и однородной микрокристаллической структурой.

В состав ситаллов входят:

оксиды – Li20, А12О3, SiO2, Мg0, СаО и др.;

нуклеаторы (катализаторы кристаллизации) – соли светочувстви­тельных металлов –Аu, Аg, Сu, являющиеся коллоидными красителями и присутствующие в стекле в виде тонкодисперсных частиц. Нуклеаторы являются дополнительными центрами кристаллизации (рис. 13). Они должны иметь кристаллическую решетку, подобную вьщеляющимся из стекла кристаллическим фазам, и способствовать равномерной крис­таллизации всей массы;

глушители (плохо растворимые частицы) – фтористые и фосфат­ные соединения, ТiO2 и др.

Структура ситаллов мелкокристаллическая, однородная, характери­зуется отсутствием пористости. Средний размер кристаллитов в ситаллах 1–2 мкм. Содержание кристаллической фазы – не менее 40–50%. Кристаллиты срастаются между собой или связаны прослойками оста­точного аморфного стекла. Количество стеклофазы не превышает не­скольких процентов. Беспорядочная ориентация кристаллитов приводит к отсутствию в ситаллах анизотропии.

Регулируя режимы термообработки, можно изменять степень крис­таллизации и размеры кристаллов, что отражается на свойствах изде­лия. Свойства ситаллов изотропны и в основном определяются фазовым составом и их структурой. Основными свойствами ситаллов являются:

• плотность 2400–2950 кг/м3;

• температура размягчения 1250–1350 °С;

• низкая теплопроводность 2–7 Вт/(м·К);

• температурный коэффициент линейного расширения (7–300)·10-7 °C-1.

• σсж=7–2000 МПа, σв=112–160 МПа, σизг=7–350 МПа;

• модуль Юнга 84–141 ГПа;

• хрупкость (при ударной вязкости 4,5–10,5 кДж/м2);

• микротвердость – 7000– 10500 МПа;

• высокая износостойкость;

• термостойкость – 200–700°С (до 1100°С);

• диэлектрические свойства;

• химическая стойкость;

• газонепроницаемость и нулевое водопоглощение.


 

Рис. 13. Схема кристаллизации стекла при образовании ситаллов

с помощью нуклеаторов

 

По внешнему виду ситаллы могут быть непрозрачными (глухими), прозрачными, а также окрашенными (темного, коричневого, серого, кремового и светлого цветов). Прочность их зависит от температуры: до 700–780 °С она снижается незначительно, а при более высоких темпера­турах быстро падает. Жаропрочность ситаллов составляет 800–1200 °С.

Причина особо ценных свойств ситаллов заключается в их исклю­чительной мелкозернистости и почти идеальной поликристаллической структуре. В них совершенно отсутствует всякая пористость. Усадка ма­териала при его переработке незначительна. Большая абразивная стой­кость делает их малочувствительными к поверхностным дефектам.

Детали из ситаллов соединяют друг с другом и другими материалами с помощью стеклокристаллического цемента с последующей термической об­работкой при 400–600°С, клеев и замазок на основе эпоксидной смолы и жидкого стекла, металлизацией с последующей пайкой.

Ситаллы классифицируют в зависимости от способа производства, от характера исходных материалов и по назначению.

Ситалловые изделия получают, как правило, путем плавления сте­кольной шихты специального состава, охлаждения расплава до пласти­ческого состояния и последующего формования методами стекольной или керамической технологии (вытягивание, выдувание, прокатка, прессование), а затем ситаллизацией. Такие изделия получают также порошковым методом спекания.

По характеру исходных материалов и свойств выделяют: петроситаллы, шлакоситалаы и технические ситаллы. Разновидностью ситаллов являются ситаллопласты – композиционные материалы, получаемые на базе пластических масс (фторопластов) и ситаллов.

Петроситаллы получают на основе габбро-норитовых, диабазовых и других горных пород, шлакоситаллы – из металлургических или топливных шлаков. Технические ситаллы изготавливают на основе искусственных композиций из различных химических соединений – оксидов, солей.

По назначению ситаллы делятся на конструкционные (строительные и машиностроительные), технические, радио-, электро- и фототехнические. На основе ситаллов получают различные клеи для склеивания металла, стекла, керамики. Наиболее широкое распространение в строительстве получили шлакоситаллы и пеношлакоситаллы.

Шлакоситаллы – ситаллы из огненно-жидких металлургических шлаков. Плотность – 600–2700 кг/м3; σсж=250–550 МПа, σизг=65–130 МПа, модуль упругости Е=11·104 МПа, рабочие температуры – до 750 °С, водопоглощение практическй равно нулю; высокие кислото- и щелочестойкость.

Изделия из шлакоситалла дешевы и отличаются высокой долговечностью. Эти изделия используются для лестничных ступеней, плиток полов, внутренних перегородок, как кровельный и стеновой материал, дл облицовки ответственных частей гидросооружений, а также в дорожном строительстве в качестве плит для тротуаров, дорожных покрытий. Листовой шлакоситалл (можно получать любого цвета) используется как декоративно-отделочный материал для наружной и внутренней облицовки сооружений. Шлакоситаллы могут быть получены любы цветов, а по долговечности они конкурируют с базальтами и гранитами.

Пеношлакоситалл – вспененный шлакоситалл с ячеистой структурой. Эффективный теплоизоляционный материал с незначительным водопогло щением и малой гигроскопичностью. Рабочие температуры – до 750 °С Пеношлакоситаллы используют для утепления стен и звукоизоляции помещений, а также для изоляции трубопроводов теплотрассы и промышленны печей.

В машиностроении ситаллы применяют для изготовления подшипников, деталей двигателей, труб, жаростойких покрытий, лопастей компрессоров, точных калибров металлорежущих станков, метрологических мер длины, фильер для вытягивания синтетического волокна, абразивов для шлифования; в химическом машиностроении – пар трения плунжеров, деталей химических насосов, реакторов, мешалок, запорных клапанов. Радио- и электротехнические ситаллы используются для изготовления подложек, оболочек, плато, сетчатых экранов, антенны обтекателей и др., а также как жаростойкие покрытия для зашиты металлов от действия высоких температур. Фототехнические ситаллы применяются для изготовления сетчатых экранов телевизоров, дорожных знаков, зеркал телескопов, для замены фото эмульсий диапозитивов, на шкалах приборов и др. Разрешающая способность и качество изображения у фотоситаллов выше, чем у обычных фотоэмульсий.

 

4.4. Вопросы по теме «Стекла»:

 

1. Какое строение имеет стекло? Что входит в состав стекла?

2. Как классифицируют стекло по химическому составу и назначению?

3. Какими свойствами обладает стекло?

4. Что такое ситалл, триплекс?

 



Дата добавления: 2016-12-09; просмотров: 5654;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.031 сек.