Изготовление и исследование свойств магнитных экранов


Целью работы является изучение методов экранирования с помощью ВТСП устройств, получение объемного и толстопленочного экранов, исследование их коэффициентов ослабления поля.

 

Общие сведения

Экранирование представляет собой защиту объема от воздействия внешнего электрического, магнитного или электромагнитного полей. Как правило, в этом объеме располагается устройство, нуждающееся в защите от данного поля. В зависимости от вида и ориентации экранируемого поля выбираются материал и конструкция экрана. Так, например, магнитное поле традиционно экранируют с помощью конструкций из ферромагнетиков, а электромагнитные поля – с помощью проводниковых конструкций. Конструкция может иметь форму сферы, стакана с дном, длинного цилиндра и т.д.

Применение сверхпроводниковых материалов позволило существенно улучшить массогабаритные показатели экранирующих конструкций, однако необходимость использования жидкого гелия ограничивает применение таких экранов.

Применение ВТСП электромагнитных экранов на частотах порядка звуковых представляется достаточно перспективным, поскольку использование обычных металлов, например меди или алюминия, требует большой толщины экрана (соответствующие толщины скин-слоя составляют несколько сантиметров). Пермаллоевые и другие экраны с высоким значением магнитной проницаемости характеризуются также большими габаритами и массой.

Для монокристаллических образцов ВТСП значения глубины проникновения составляют доли микрометра. Для поликристаллических образцов она существенно больше (10 мкм), однако использование ВТСП экранов, экранирующих корпусов интегральных схем и т.д. является перспективным в сравнении с другими методами. Физической основой работы экрана является эффект Мейсснера-Оксенфельда. Внешнее магнитное поле в сверхпроводнике убывает с глубиной:

B(x) = B(0) exp(-x / λL), (4.9)

где x – расстояние от поверхности,

λL – лондоновская глубина проникновения.

Для низкотемпературных сверхпроводников λL=10-7 м, поэтому слабые поля в объемный сверхпроводник практически не проникают. Для реальных ВТСП, как уже отмечалось, эта величина много больше. Если величина внешнего магнитного поля становится сравнимой со значением нижнего критического поля, сверхпроводник второго рода может перейти в промежуточное состояние. При этом образец разбивается на чередующиеся сверхпроводящие и нормальные области (состояние Шубникова) и в него проникает магнитное поле. Индукция поля, при котором образец переходит в состояние Шубникова, определяется его формой и критическими свойствами материала. Для экрана в виде цилиндра с плоским дном и отношением внутреннего диаметра к внешнему не более 0,7 это поле (перпендикулярные оси цилиндра) можно определить из выражения

B││= ВС1[(1-d/D)/2]1/2, (4.10)

где ВС1 – индукция первого критического поля материала;

D, d – внешний и внутренний диаметры экрана.

Индукция аксиального поля, при котором материал экрана переходит в промежуточное состояние, приблизительно равна критической индукции поля.

Для ВТСП материалов картина усложняется вследствие того, что они представляют собой гранулированные конгломераты, где между СП гранулами есть джозефсоновские контакты. В этом случае экранирующие свойства связывают с величиной критического поля межгранульных связей, при котором начинается проникновение поля в ВТСП.

Обычно ВТСП магнитные экраны выполняются путем одностороннего, двухстороннего или гидростатического прессования ВТСП порошка и последующего обжига. Такой способ пригоден для изготовления небольших экранов. Однако для изготовления длинномерных цилиндров или экранов более сложной формы (сфера) такой способ не подходит. В этом случае пользуются дискретными экранами, состоящими из фрагментов-колец. В предыдущей работе были изготовлены такие кольца-фрагменты, которые можно собрать в длинномерный цилиндр. Такие фрагменты могут быть выполнены нанесением тонких или толстых пленок на керамическое основание.

Коэффициент экранирования (ослабления поля) К определяется как отношение величины внутреннего поля Bi к внешнему – Be:

К= Bi / Be. (4.11)

Измерение производят следующим образом. Экран с датчиком поля помещают внутри соленоида, задающего внешнее поле. В качестве датчика используют феррозондовый датчик или, как в нашем случае, датчик Холла. Соленоид на штанге опускают в сосуд Дьюара с жидким азотом. Вся система располагается внутри установленного вертикально двухслойного ферромагнитного экрана с коэффициентом ослабления магнитного поля Земли около 100.

Последовательно с обмоткой соленоида включен резистор. Падение напряжения на резисторе пропорционально величине внешнего магнитного поля соленоида, ЭДС Холла пропорциональна величине внутреннего поля. Из графика Ux = f(Ic) можно оценить коэффициент ослабления поля для данного экрана.

Рис. 4.8. Толстопленочный фрагмент-кольцо магнитного экрана:
1 – керамика, 2 – пленка

Рис. 4.9. Температурный режим вжигания ВТСП пленки: Т1=120°С (30 мин) V1=30ºС/ч; Т2=910-915°С (10-20 мин); Т3=895°С, V2=6ºС/ч; Т4=860°С

Задания

1). Получите толстопленочные фрагменты-кольца.

1.1. На керамическое основание (рис. 4.8) нанесите пасту (порошок Bi-2212 и 10–15% органической связки).

1.2. В электрической печи проведите вжигание пасты (рис. 4.9).

 

Рис. 4.10. Магнитный экран: Ф – кольца-фрагменты экрана; Д – датчик Холла;
a – расстояние между кольцами-фрагментами; L – обмотка соленоида

2). Соберите магнитные экраны.

2.1. Соберите экран из объемных колец-фрагментов.

2.2. Соберите экран из пленочных колец-фрагментов.

3). Измерьте коэффициент экранирования объемного и пленочного экранов.

3.1. Соберите схему для измерения коэффициента экранирования (рис. 4.11).

Рис. 4.11. Схема установки для измерения коэффициента экранирования: ИП – источники питания, Д – датчик Холла, С – двухкоординатный самописец; L – соленоид;
R – резистор

3.2. Получите графики Bi = f(Be).

3.3. Изменяя расстояние между кольцами, получите графики K=Bi/Be = f(a).

4). Оформите отчет, содержащий графики и их сравнительную оценку.

Контрольные вопросы

1. Как осуществляют экранирование?

2. Какие существуют экраны?

3. Какие устройства требуют экранирования?

4. Опишите и объясните эффект Мейсснера.

5. Охарактеризуйте состояние Шубникова.

6. Что такое вихри Абрикосова?

7. Поясните характер зависимости x=f(a).

8. Как работает устройство измерения коэффициента ослабления?

Литература

1. Красов В.Г. и др. Толстопленочная технология в СВЧ микроэлектронике / Красов В.Г., Петрацскас Г.Б., Чернозубов Ю.С. – М.: Радио и связь, 1985.- 168 с.

2. Бондаренко С.И., Шеремет В.И. Применение сверхпроводимости в магнитных измерениях – Л.: Энергоатомиздат, 1982.-132 с.

Заключение

 

Мы рассмотрели в этой книге основные вопросы проектирования и технологии высокотемпературной криоэлектроники. Из-за ограниченности объема пособия и желания сэкономить время читателя рассматривались наиболее важные в теоретическом и практическом плане вопросы. Многие существенные моменты, недостаточно “продвинутые” в практическом плане, остались вне поля зрения.

Недавно исполнилось 90 лет со дня открытия сверхпроводимости и 40 лет с тех пор, как на базе сверхпроводниковых материалов и криогенной техники гелиевых температур зародились низкотемпературные сверхпроводниковые технологии, в числе которых была и криоэлектроника. Одним из первых её элементов был проволочный криотрон. За прошедшие годы низкотемпературная криоэлектроника получила существенное развитие: были изобретены цифровые устройства на базе криотронов (в начале пленочных, а затем джозефсоновских); приемники и преобразователи СВЧ сигналов, приборы на базе СКВИДов и т. д.

Более 15 лет прошло со дня открытия высокотемпературной сверхпроводимости – события, которое должно было стимулировать работы в области сверхпроводимости вообще и криоэлектроники в частности. Так и случилось: количество и объем исследований в этой области резко возросли в 1996 году и в настоящее время являются довольно значительными.

Однако, несмотря на явные успехи, высокотемпературная криоэлектроника все еще находится на стадии становления, чему имеются различные причины.

Сегодня сохранилось драматичное и напряженное состояние в области исследований ВТСП. По-прежнему велики ожидания в этом плане. Правительство и промышленные фирмы, вложившие и продолжающие вкладывать в исследования ВТСП крупные средства, внимательно следят за прикладными аспектами исследований, опасаясь пропустить момент рывка в наукоемкий (а значит перспективный, престижный и доходный) ВТСП рынок. Большие ожидания заставляют скрупулезно оценивать и сегодняшнее состояние исследований, и их рыночный потенциал.

К причинам, тормозящим развитие криоэлектроники, можно отнести также:

· слабую изученность криоэлектронных процессов в охлаждаемых структурах и пленках,

· недостаточность реальных конструкторско-технологических идей по созданию интегральных криоэлектронных приборов и особенно – надежных, воспроизводимых, многоэлементных, многослойных интегральных схем с субмикронными зазорами.

Практически отсутствуют методы снижения энергоемкости и массогабаритных показателей криостатов, увеличения срока их непрерывной работы.

Иными словами, необходимо найти решения, с помощью которых полученные результаты будут дешевыми, воспроизводимыми, доступными. Мы надеемся, что приобретенные вами знания и навыки помогут решить поставленные задачи.



Дата добавления: 2016-11-29; просмотров: 1950;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.