Монокристаллы, пликристаллы, аморфные материалы


 

В природе монокристаллы обычно встречаются среди минералов. Промышленные монокристаллические материалы удается получить с помощью специально разработанной технологии выращивания монокристаллов. Это связано с тем, что в обычных условиях при охлаждении вещества из расплава образуется много центров кристаллизации и возникает поликристаллическое состояние вещества.

Поликристаллические материалы состоят из большого числа сросшихся друг с другом мелких кристаллических зерен (кристаллитов), хаотически ориентированных в разных направлениях. К поликристаллическим материалам относятся металлы, многие керамические материалы. Поликристаллические вещества обычно изотропны. Однако, если в ориентации кристаллитов создать упорядоченность (например, механической обработкой металла в прокатном стане, поляризацией сегнетокерамики), то материал становится анизотропным. Такие тела с искусственно созданной анизотропией называют текстурами.

Аморфно-кристаллические материалы - это частично закристаллизованные аморфные вещества. Частично кристаллическую структуру имеют многие полимеры. Стекло определенных составов при выдержке при повышенных температурах начинает кристаллизоваться; благодаря образующимся мелким кристалликам оно теряет прозрачность, превращаясь в аморфно-кристаллический материал - ситалл.

Различают следующие дефекты:

- точечные или нульмерные – это вакансии, междуузельные атомы и пр;

- линейные или одномерные – это дислокации (краевые, винтовые);

- поверхностные или двумерные – это границы зерен и двойников, межфазные границы, дефекты упаковки частиц, трещины на поверхности (трещины Гриффитса);

- объемные или трехмерные – это пустоты, включения второй фазы и пр.

Точечные дефекты подразделяются на энергетические, электронные и атомные.

К энергетическим дефектам относят фононы – кванты тепловых колебаний, которые заполняют кристаллы и распределяются в них соответственно условиям теплового равновесия. К этому же типу дефектов относят возбуждения решетки в результате облучения кристаллов световыми, рентгеновскими и прочими лучами.

К электронным дефектам относят наличие избыточных электронов или их недостаток.

К атомным дефектам относят нарушения в виде вакансий (дефекты по Шотки), смещений (дефекты по Френкелю), избытка или недостатка атомов, а также примеси посторонних атомов.

Дислокациями называют линейные дефекты, возникшие в процессе роста или пластической деформации кристалла. Различают краевые и винтовые дислокации.

Образование дислокаций в процессе роста кристаллов происходит в тех случаях, когда растущие навстречу блоки и зерна повернуты друг относительно друга. При срастании таких блоков образуются избыточные атомные плоскости – дислокации.

В процессе пластической деформации происходит не одновременный сдвиг атомов данной плоскости, а последовательное перемещение связей между атомами, лежащими по обе стороны линии скольжения. Такое перераспределение связей предопределяет движение дислокаций от одной группы атомов к другой. Количество дислокаций в твердых кристаллических телах очень велико. Число дислокаций пересекающих 1см2 площади внутри кристалла может достигать 104 –106 и более.

Наличие дислокаций значительно снижает прочность кристаллов, на несколько порядков. Дислокации влияют на электрические, оптические, магнитные и другие свойства материалов.

Вместе с тем замечено, что при определенных условиях дислокации и другие дефекты кристаллов увеличивают прочность материалов. Это происходит тогда, когда накоплено значительное количество дислокаций, которые, взаимодействуя друг с другом, мешают своему развитию и перемещению. Перемещению дислокаций препятствуют также атомы примесей, границы блоков, различные обособленные включения в решетки. Отсюда ряд исследователей делают вывод о положительном влиянии дислокаций на прочностные свойства материалов. Видимо, все таки, лучше вообще не иметь дефектов, чем иметь их в огромном количестве, которое несколько увеличивает прочность материала по сравнению с некоторой минимальной прочностью, которую имеет материал при неблагоприятном числе дефектов. Прочность бездефектного материала в сотни раз больше прочности материала с «оптимальным» количеством дефектов. Необходимо также отметить возможность локального скопления дислокаций, которые могут вызвать местные концентрации напряжений, которые способны образовать зародыши микротрещин (трещины Гриффитса).

Аморфная структура

Аморфная структура является одним из физических состояний твердых тел, Аморфные вещества характеризуются двумя особенностями. Во-первых, свойства таких веществ при обычных условиях не зависят от выбранного направления, т.е. они - изотропны. Во-вторых, при повышении температуры происходит размягчение аморфного вещества и постепенный переход его в жидкое состояние. Точное значение температуры плавления отсутствует.

Общим для кристаллического и аморфного состояний веществ является отсутствие поступательного перемещения частиц и сохранение только их колебательного движения около положения равновесия. Различие между ними состоит в наличии геометрически правильной решетки у кристаллов и отсутствии дальнего порядка в расположении атомов у аморфных веществ.

Аморфное состояние вещества, по сравнению с кристаллическим, всегда менее устойчиво и обладает избыточным запасом внутренней энергии. В связи с этим, при определенных условиях, самопроизвольно осуществляется переход из аморфного состояние в кристаллическое.

Твердые тела в аморфном состоянии можно получить двумя путями. Первый путь – быстрое охлаждение расплавов кристаллических веществ, преимущественно ионного и ковалентного строения. Типичный представитель таких аморфных тел – силикатные стекла, битумы, смолы и пр.

Второй путь – диспергация кристаллических структур. В результате диспергации кристаллических тел образуются аморфизованные дисперсии в виде коллоидов и растворов. Разрушаясь или конденсируясь, дисперсии изменяют свое агрегатное состояние. Пересыщенные растворы, например, могут превратиться в гель и образовать полимер или кристаллизоваться.

Аморфные вещества подразделяют на витроиды (стекла), дисперсные системы и полимеры.

Витроиды – это твердые тела в аморфном состоянии, имеющие стекловидную структуру. Как уже отмечалось, стекла образуются в результате быстрого охлаждения, преимущественно силикатных расплавов. Быстрое охлаждение препятствует созданию упорядоченной структуры. Особенно, если молекулы громоздки, а скорость охлаждения велика.

Дисперсные системы – мельчайшие частицы размером 10-7-10-9 м. к ним относятся коллоиды, золи (органозоли, гидрозоли), пасты, клеи мастики краски, латексы и пр. К дисперсным аморфным системам относятся также некоторые горные породы (диатомит, опоки), имеющие общую формулу SiO2.nH2O; а также активный кремнезем, который образуется в результате разложения глин при их нагревании.

Полимеры – вещества, характерной особенностью которых является большой размер и большая молекулярная масса молекул. Кроме того, молекулы объединены в структурные единицы, включающих 103-105 молекул-мономеров.



Дата добавления: 2021-02-19; просмотров: 340;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.