Водорастворимые витамины группы В и витамин С, их участие в метаболических процессах. Нарушение физиологических функций организма при недостатке витаминов, их причины

Тиамии (витамин В1) — соединение, построенное из пиримидинового и тиазолового колец, соединенных между собой метиленовым мостиком. Биологически активной, коферментной формой витамина явл. его пирофосфорный эфир —тиамин-дифосфат (ТДФ), широко используемый в настоящее время я лечебной практике под названием кокарбоксилаза. Биологическая роль тиамина связана с его участием в построении коферментов ряда важнейших ферментов, в частности пируватдегидрогеназы, катализирующей окисление пировиноградной кислоты до ацетил-КоА; α-кето-глутаратдегидрогеназы, участвующей в превращении одного из метаболитов цикла Кребса-α-кетоглутаровой кислоты в сукцинил-КоА; транс-кетолазы, регулирующей ключевые реакции пентозофосфатного цикла. Тиамин необходим также для биосинтеза важнейшего нейромедиатора - ацетилхолина.

Недостаточность тиамина в организме приводит к нарушению окисления углеводов, накоплению недоокисленных продуктов (пировиноградной кислоты и др.) в крови и моче, угнетению биосинтеза ацетилхолина.

Рибофлавин (витамин В2) представляет производное изоаллоксазина, связанного с 5-атомным спиртом — рибитолом. Суточная потребность в рибофлавине взрослого человека составляет 1,3 — 2,4 мг. Биологическая роль рибофлавина определяется прежде всего его участием в построении двух важнейших коферментов — флавинмоно-нуклеотида (ФМН) и флавинадениндинуклеотида (ФАД), входящих в состав различных окислительно-восстановительных ферментных систем. Таким образом, биохимический механизм действия рибофлавина связан с его участием в процессах биологического окисления и энергетического обмена. Наряду с этим рибофлавин участвует в построении зрительного пурпура, защищая сетчатку от избыточного воздействия Уф-лучей. Гипо- и авитаминоз В2 (арибофлавиноз) распространены в ряде районов развивающихся стран Африки, Южной и Юго-Восточной Азии. Заболевание характеризуется поражением слизистой оболочки губ с вертикальными трещинами и десквамацией эпителия (хейлоз), ангулярным стоматитом, глосситом, себорейным шелушением кожи вокруг рта, на крыльях носа, ушах, носогубных складках и изменениями органа зрения.

Витамин В3(пантотеновая кислота) В состав пантотена входит β-аланин, соединенный через аминогруппу с диоксимонокарбоновой кислотой. Чистая пантотеновая кислота представляет собой светло-желтое вязкое масло, хорошо растворимое в воде. Суточная потребность человека исчисляется примерно в 10мг. Выяснилась тесная связь пантотена с реакцией ацетнлирования в животном организме. Оказалось, что в сосстав коферментной группы, осуществляющей реакцию ацетилирования (КоА), входит пантотеновая кислота. КоА участвует в переносе не только ацетильного, но и других кислотных (ацильных) радикалов, образуя соответствующие ацилкоэнзимы А (ацетил-, бутирил-, сукцинил-КоА и т.п.). В окислительном превращении пировиноградной кислоты, также участвует коэнзим А, в который входит пантотеновая кислота. Можно вообще считать, что нарушение в обмене веществ при недостатке в организме пантотеновой кислоты обусловлено частичным выпадением функций КоА, для образования которого необходима пантотеновая кислота

Аскорбиновая кислота и продукт ее окисления — дегидроаскорбиновая кислота — участвуют в биологических реакциях окисления и восстановления. Аскорбиновая кислота необходима для функциональной интеграции сульфгидрильных групп ферментов, для образования коллагена и внутриклеточного структурного вещества, важного для формирования хрящей, костей, зубов и заживления ран. Она влияет на образование гемоглобина, созревание эритроцитов, превращение фолиевой кислоты в тетрогидрофолат, участвует в метаболизме углеводов, биосинтезе катехоламинов и гидроксилировании карнеоната (метаболит альдостерона). С участием аскорбиновой кислоты происходит инактивация свободных радикалов, метаболизм циклических нуклеидов, простагландинов и гистамина. Являясь антиоксидантом, аскорбиновая кислота предохраняет мембраны клеток и, в частности, лимфоцитов от повреждающего действия перекисного окисления. Это является основой иммуностимулирующих эффектов витамина С, которые проявляются в действии на гуморальные и клеточные механизмы иммунитета, миграцию лимфоцитов, хемотаксис, синтез и освобождение интерферона. Аскорбиновая кислота повышает всасывание железа в желудочно-кишечном тракте и способствует превращению окиси железа в закисную форму.

Дефицит витамина Сведет к развитию цинги. Клинические проявления цинги развиваются, когда запасы витамина С в организме оказываются менее 300 мг.

 

2. ОБМЕН ЭНЕРГИИ. БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ

 

Питательные вещества как источник энергии и пластического материала для организма. Общая схема катаболизма питательных веществ в организме. Фазы катаболизма, энергетический эффект отдельных фаз. Общие и специфические пути катаболизма. Превращение энергии в клетке. Понятие о свободной энергии. Эндэргонические и экзэргонические реакции метаболизма, их взаимосвязь. Макроэргические соединения, их классификация и биологическая роль. Гипо-энергетические состояния, причины их развития.

При расщеплении питательных веществ и процессе всасывания часть энергии превращается в теплоту - специфический и динамический компоненты действия пищи.

Пища человека содержит множество химических соединений как органических, так и минеральных Главную долю органических веществ пищи составляют основные пищевые вещества — углеводы, жиры, белки Часть органических веществ — это минорные пищевые вещества, требующиеся в малых количествах. К ним принадлежат, в частности, витамины.

Пищевые вещества могут быть заменимыми и незаменимыми. Заменимые — это те, которые могут образоваться в организме из других веществ. Например, жиры могут образоваться из углеводов.

Жиры 39 кДж/г (9.2 ккал/г), Белки, углеводы 17 кДж/г (4,1 ккал/г)

Катаболизм- процесс расщепления органических молекул до конечных продуктов. Конечные продукты превращений органических веществ у животных и человека - СО2, Н2О и мочевина. В процессы катаболизма включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток. Реакции катаболизма сопровождаются выделением энергии (экзергонические реакции).

Стадии катаболизма биомолекул. При расщеплении биомолекул в организме выделяют 3 стадии, которые являются общими.

В первой стадии (специфический путь катаболизма) все сложные биомолекулы (полимеры) расщепляются до простых компонентов (мономеров):

1) полисахариды расщепляются до моносахаридов;

2) липиды (триацилглицеролы) – до жирных кислот и глицерина;

3) белки – до аминокислот;

4) нуклеиновые кислоты – до мононуклеотидов

Основными процессами является гидролиз, фосфоролиз. На этой стадии образуется около 1% химической энергии, которая рассеивается в виде тепла. На выходе 50 соединений.

Во второй стадии (специфические пути катаболизма) мономеры, образовавшиеся в первой стадии, внутриклеточно подвергаются превращениям; выход энергии 20-30%

Реакции:
1) для моносахаридов – гликолиз, конечным метаболитом которого является пировиноградная кислота, которая далее подвергается окислительному декарбоксилированию и превращается в активную форму уксусной кислоты – ацетилКоА;
2) для жирных кислот – β-окисление, конечным продуктом которого является ацетилКоА;
для глицерина – расщепление до пирувата, который далее превращается в ацетилКоА;
3) для аминокислот и нуклеотидов – дезаминирование и расщепление безазотистых молекул до ди и трехуглеродных карбоновых кислот и их производных. Большинство этих метаболитов превращается в ацетилКоА.

Таким образом, общим конечным продуктом второй стадии внутриклеточного катаболизма углеводов, липидов и аминокислот является ацетилКоА, а так же оксалоацетат, фумарат, 2-оксоглуторат, сукцинил-КоА. Здесь, как и в первой фаз,е встречаются реакции гидролиза, фосфоролиза, тиолиза, лиазного расщепления и, в отличии от первой фазы, - окислительные процессы

В третьей стадии (общий путь катаболизма) в митохондриях происходит окисление ацетилКоА до СО2 и Н2О и окислительное фосфорилирование с образованием АТФ. (Цикл Кребса) Окисление ацетилКоА до СО2 происходит в цикле трикарбоновых кислот, при участии коферментов НАД и ФАД и цитохромов Атомы водорода поступают в дыхательную цепь (электроннотранспортная цепь митохондрий) и переносятся на кислород, образуя Н2О. Полученная энергия (на этой стадии образуется 70-80% энергии) используется для осуществления окислительного фосфорилирования, главного источника АТФ в организме. Эта фаза носит исключительно окислительный характер, аккумуляция энергии достигает 40%. Водород из ЦТК идет в ЦДФ, образует воду.

Химические реакции, протекающие в клетках, могут иметь различные значения ∆Go: положительные или отрицательные. Большинство катаболических реакций имеет отрицательные значения ∆Gо, т.е. являются экзэргоническими и могут идти самопроизвольно. В то же время реакции клеточного анаболизма часто являются эндэргоническими и самопроизвольно идти не могут, для их осуществления необходима энергия, поступающая извне. Необходимо использовать свободную энергию, выделяющуюся в экзэргонических реакциях катаболизма. Это использование свободной энергии экзэргонических реакция для осуществления эндэргонических реакций есть энергетическое сопряжение реакций.

Единственное условие эффективности энергетического сопряжения: суммарное изменение ∆G в двух сопряженных реакциях должно быть отрицательным. Живые объекты эффективно используют энергию, заключенную в химических связях тех или иных соединений. Именно в виде химической энергии и передается энергия в системе сопряженных химических реакций.

Соединения, выступающие в качестве переносчиков энергии, содержат в одной из своих связей большой запас химической энергии, которая высвобождается при их разрыве. Эти соединения называют «макроэргическими соединениями» или «макроэргами», а химические связи, при разрыве которых выделяется большое количество свободной энергии, получили название «макроэргических связей». Химическая связь в том или ином соединении считается макроэргической, если при её разрыве выделяется не менее 5 ккал (20 кДж) в расчете на 1 моль связи. Свободная энергия, выделяющаяся в ходе катаболической экзэргонической реакции, первоначально накапливается (аккумулируется) в виде энергии макроэргической связи соединения переносчика энергии, а затем эта аккумулированная энергия высвобождается при разрыве макроэргической связи и используется в ходе анаболической эндэргонической реакции.

4 класса макроэргов:

1. Полифосфаты нуклеотидов ( АТФ, ЦТФ, УТФ и др.) Макроэргическими связями в их составе являются фосфоангидридныепирофосфатные связи:

2. Ацилфосфата или карбонилфосфаты( ацетилфосфат, 1,3ди фосфоглицерат ). Макроэргической связью является ангидридная связь между карбоксильной группой кислотного остатка и остатком фосфорной кислоты:

3. Тиоэфиры( ацетилКоА, сукцинилКоА ). Макроэргической связью является ангидридная связь между карбоксильной группой кислоты и HSгруппой тиоспирта, входящего в состав КоА ):

4. Гуанидинфосфаты( креатинфосфат, аргининфосфат). Макроэргической связью является ангидридная связь между гуанидиновой группой и остатком фосфорной кислоты

Несмотря на высокие значения ∆Go для процессов разрыва макроэргических связей богатые энергией соединения представляют собой достаточно стабильные в условиях живых систем вещества. Кроме того, это низкомолекулярные соединения, поэтому они могут сравнительно легко перемещаться в клетке. Совокупность их свойств: способность аккумулировать энергию и способность диффундировать в клетке и позволяет им выполнять функцию переносчиков энергии.






Дата добавления: 2022-04-12; просмотров: 71; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2022 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.027 сек.