Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»


Как было установлено ранее, количественное натуральное число а получается в результате счета элементов конечного множества А: а = n(А). Это же число а может быть получено и при пересчете элементов другого множества, например, В. Но если а = n(В), то множества А и В равномощны, поскольку содержат поровну элементов.

Так как любому непустому конечному множеству соответствует только одно натуральное число, то вся совокупность конечных множеств разбивается на классы равномощных множеств. В одном классе будут содержаться все одноэлементные множества, в другом - двухэлементные и т.д. Множества одного класса различны по своей природе, но все они содержат одинаковое число элементов. И это число можно рассматривать как общее свойство класса конечных равномощных множеств.

Таким образом, с теоретико-множественной точки зрения,натуральное число - это общее свойство класса конечных равномощных множеств.

Так как каждый класс равномощных конечных множеств однозначно определяется выбором какого-нибудь его представителя, то о натуральном числе «три» можно сказать, что это общее свойство класса множеств, равномощных, например, множеству сторон треугольника, а о натуральном числе «четыре», что это общее свойство класса множеств, равномощных, например, множеству вершин квадрата.

Число «нуль» с теоретико-множественных позиций рассматривается как число элементов пустого множества: 0 = n(Æ).

Итак, натуральное число а как характеристику количества можно рассматривать с двух позиций:

1) как число элементов в множестве А, получаемое при счете, т.е. а = n(А), причем А ~ Nа;

2) как общее свойство класса конечных равномощных множеств. Установленная связь между конечными множествами и натураль­ными числами позволяет дать теоретико-множественное истолкование отношения «меньше».

В аксиоматической теории это отношение определено следующим образом: а < b Û ($ сÎN) а + с = b.

Если а < b, то это означает, что отрезок натурального ряда Nа является собственным подмножеством отрезка Nb, т.е. NаÌNb и Nа¹Nb. Справедливо и обратное утверждение: если Nа - собственное подмножество Nb, то а < b. Тем самым отношение «меньше» получает теоре­тико-множественное истолкование: а<b в том и только в том случае, когда отрезок натурального ряда Nа является собственным подмножеством отрезка Nb: а<b Û NаÌNb и Nа¹Nb. Так, справедливость неравенства 3<7 вытекает из того, что {1,2,3} Ì {1,2,3,4, 5, 6,7}.

Если воспользоваться терминологией, принятой в школьном курсе математики, то последнее определение отношения «меньше» можно сформулировать так: «Число а меньше числа b тогда и только тогда, когда при счете число а называют раньше числа b».

Данная трактовка отношения «меньше» позволяет сравнивать числа, опираясь на знание их места в натуральном ряду. Однако сравнение чисел (особенно небольших) часто выполняют иначе, используя связь чисел с конечными множествами.

 

 


Рис. 1

Например, если 3 - это число квадратов на рисунке 1, а 7 - число кружков на этом рисунке, то 3 < 7, потому что во втором множестве можно выделить собственное подмножество, равномощное множеству квадратов. Этот способ установления отношения между числами 3 и 7 вытекает из трактовки отношения «меньше», дан­ной выше: множество квадратов равномощно отрезку N3, а множество кружков - отрезку N7 и N3 Ì N7.

В общем виде рассмотренный подход к определению отношения «меньше» можно обосновать следующим образом: пусть а = n(А), b = n(В), и а < b. Тогда А ~ Nа, В ~ Nb и Nа Ì Nb. Последнее отношение означает, что в множестве В можно выделить собственное подмноже­ство В1, равномощное множеству А: а = n (А), b = n(В) и а < b Û А ~ В1, где В1 Ì В, В1 ¹ В, В1 ¹ Æ.

Свойства отношения «меньше» для натуральных чисел также получают теоретико-множественное истолкование: транзитивность и антисимметричность этого отношения связаны с тем, что транзитивно и антисимметрично отношение «быть подмножеством».

Теоретико-множественный смысл неравенства 0 < а, истинного для любого натурального числа а, связан с тем, что пустое множество является подмножеством отрезка Nа (или любого такого множества А, для которого а = n(А)).

Заметим, что приведенные трактовки отношения «меньше» основываются на понятии подмножества конечного множества. Так как в реальной жизни мы, как правило, имеем дело с конечными множествами, то наш опыт говорит о том, что и любое подмножество конечного множества - конечно. Однако с математической точки зрения этот факт нуждается в доказательстве.

Теорема.Любое непустое подмножество конечного множества конечно.

Доказательство этой теоремы мы опускаем.

В связи с тем, что при определении числа, соответствующему множеству А, приходится прибегать к счету, а для этого нужен некоторый отрезок натурального ряда, то изучение математики в начальных классах начинается, как правило, с усвоения чисел первого десятка. Параллельно раскрывается смысл каждого из этих чисел, причем ко­личественное натуральное число часто рассматривается как общее свойство класса конечных равномощных множеств. Например, когда учащиеся изучают число «три», они рассматривают множества, содержащие три элемента: три кубика, три карандаша и др. Так происходит при изучении всех чисел первого десятка, но число элементов в множестве каждый раз определяется путем пересчета, т.е. количественный и порядковый смысл числа, а также его запись выступают в тесной взаимосвязи.

Сравнение чисел в начальном курсе математики осуществляется различными способами - оно основано на всех рассмотренных нами подходах к трактовке отношения «меньше».



Дата добавления: 2021-01-26; просмотров: 390;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.