Электромагнитный момент и механические характеристики асинхронного двигателя


 

Электромагнитный момент асинхронного двигателя создается взаимодействием тока в обмотке ротора с вращающимся магнит­ным полем. Электромагнитный момент М пропорционален элек­тромагнитной мощности:

, (13.11)

где:

 

. (13.12)

– угловая синхронная скорость вращения.

 

Подставив в (13.11) значение электромагнитной мощности по (13.5), получим

 

, (13.13)

 

т. е. электромагнитный момент асинхронного двигателя пропор­ционален мощности электрических потерь в обмотке ротора.

Если значение тока ротора по выражению (12.25) подставить в (13.13), то получим формулу электромагнитного момента асин­хронной машины :

 

. (13.14)

 

Параметры схемы замещения асинхронной машины , , и , входящие в выражение (13.14), являются постоянными, так как их значения при изменениях нагрузки машины остается практически неизменными. Также постоянными можно считать напряжение на обмотке фазы статора и частоту . В выражении момента единственная переменная величина – скольжение , которое для различных режимов работы асинхронной машины может принимать разные значения в диапазоне от до (см. рис. 10.1).

Рассмотрим зависимость момента от скольжения при , и постоянных параметрах схемы замещения. Эту зависимость принято называть механической характеристи­кой асинхронной машины. Анализ выражения (13.14), представ­ляющего собой аналитическое выражение механической характе­ристики , показывает, что при значениях скольжения и электромагнитный момент . Из этого следует, что механическая характеристика имеет максимум.

Для определения величины критического скольжения , со­ответствующего максимальному моменту, необходимо взять пер­вую производную от (13.14) и приравнять ее нулю: . В результате

 

. (13.15)

Подставив значение критического скольжения (по 13.15) в выражение электромагнитного момента (13.14), после ряда преоб­разований получим выражение максимального момента :

 

. (13.16)

 

В (13.15) и (13.16) знак плюс соответствует двигательному, а знак минус – генераторному режиму работы асинхронной машины.

Для асинхронных машин общего назначения активное сопро­тивление обмотки статора намного меньше суммы индуктивных сопротивлений: . Поэтому, пренебрегая величиной , получим упрощенные выражения критического скольжения

 

, (13.17)

и максимального момента

 

. (13.18)

 

Рис. 65. Зависимость режимов работы асинхронной машины от скольжения

 

Анализ выражения (13.16) показывает, что максимальный мо­мент асинхронной машины в генераторном режиме больше, чем в двигательном . На рис. 65 показана механическая асинхронной машины при . На этой характеристике указаны зоны, соответствующие различным режимам работы: двигательный режим , когда электро­магнитный момент является вращающим; генераторный режим и тормозной режим противовключением , когда электромагнитный момент М является тормозящим.

Из (13.14) следует, что электромагнитный момент асинхрон­ного двигателя пропорционален квадрату напряжения сети: . Это в значительной степени отражается на эксплуатаци­онных свойствах двигателя: даже небольшое снижение напряже­ния сети вызывает заметное уменьшение вращающего момента асинхронного двигателя. Например, при уменьшении напряжения сети на 10% относительно номинального электро­магнитный момент двигателя уменьшается на 19%: , где – момент при номинальном напря­жении сети, а – момент при пониженном напряжении.

Для анализа работы асинхронного двигателя удобнее восполь­зоваться механической характеристикой , представленной на рис. 66. При включении двигателя в сеть магнитное поле статора, не обладая инерцией, сразу же начинает вращение с син­хронной частотой , в то же время ротор двигателя под влиянием сил инерции в начальный момент пуска остается неподвижным и скольжение .

Подставив в (13.14) скольжение , получим выражение пускового момента асинхронного двигателя :

 

. (13.19)

 

Рис. 66. Зависимость электромагнитного момента асинхронного двигателя от скольжения

 

Под действием этого момента начи­нается вращение ро­тора двигателя, при этом скольжение уменьшается, а вра­щающий момент воз­растает в соответст­вии с характеристи­кой . При критическом сколь­жении момент достигает максималь­ного значения . С дальнейшим нараста­нием частоты вращения (уменьшением скольжения) момент на­чинает убывать, пока не достигнет установившегося значения, равного сумме противодействующих моментов, приложенных к ротору двигателя: момента х.х. и полезного нагрузочного мо­мента (момента на валу двигателя) , т. е.

 

. (13.20)

 

Следует иметь в виду, что при скольжениях, близких к едини­це (пусковой режим двигателя), параметры схемы замещения асинхронного двигателя заметно изменяют свои значения. Объяс­няется это в основном двумя факторами: усилением магнитного насыщения зубцовых слоев статора и ротора, что ведет к умень­шению индуктивных сопротивлений рассеяния и , и эффек­том вытеснения тока в стержнях ротора, что ведет к увеличению активного сопротивления обмотки ротора . Поэтому параметры схемы замещения асинхронного двигателя, используемые при рас­чете электромагнитного момента по (13.14), (13.16) и (13.18), не могут быть использованы для расчета пускового момента по (13.19).

Статический момент равен сумме противодействующих моментов при равномерном вращении ротора . Допус­тим, что противодействующий момент на валу двигателя соот­ветствует номинальной нагрузке двигателя. В этом случае устано­вившийся режим работы двигателя определится точкой на механической характеристике с координатами и ,

где: и – номинальные значения электромагнитного мо­мента и скольжения.

 

Из анализа механической характеристики также следует, что устойчивая работа асинхронного двигателя возможна при скольжениях меньше критического , т. е. на участке механической характеристики. Дело в том, что именно на этом участке изменение нагрузки на валу двигателя сопровождается соответствующим изменением электромагнитного момента. Так, если двигатель работал в номинальном режиме , то име­ло место равенство моментов: . Если произошло увеличение нагрузочного момента до значения , то равен­ство моментов нарушится, т. е. , и частота враще­ния ротора начнет убывать (скольжение будет увеличиваться). Это приведет к росту электромагнитного момента до значения (точка ), после чего режим работы двигателя вновь станет установившимся. Если же при работе двигателя в номинальном режиме произойдет уменьшение нагрузочного мо­мента до значения , то равенство моментов вновь нарушится, но теперь вращающий момент окажется больше суммы противо­действующих: . Частота вращения ротора начнет возрастать (скольжение будет уменьшаться), и это приведет к уменьшению электромагнитного момента до значения (точка ); устойчивый режим работы будет вновь восстановлен, но уже при других значениях и .

Работа асинхронного двигателя становится неустойчивой при скольжениях . Так, если электромагнитный момент двигате­ля , а скольжение , то даже незначительное увели­чение нагрузочного момента , вызвав увеличение скольжения , приведет к уменьшению электромагнитного момента . За этим последует дальнейшее увеличение скольжения и т. д., пока сколь­жение не достигнет значения , т. е. пока ротор двигателя не остановится.

Таким образом, при достижении электромагнитным момен­том максимального значения наступает предел устойчивой ра­боты асинхронного двигателя. Следовательно, для устойчивой работы двигателя необходимо, чтобы сумма нагрузочных момен­тов, действующих на ротор, была меньше максимального момен­та: . Но чтобы работа асинхронного дви­гателя была надежной и чтобы случайные кратковременные перегрузки не вызывали остановок двигателя, необходимо, чтобы он обладал перегрузочной способностью. Перегрузоч­ная способность двигателя определяется отношением макси­мального момента к номинальному . Для асинхронных двигателей общего назначения перегрузочная способность состав­ляет .

Следует также обратить внимание на то, что работа двигателя при скольжении , т. е. на рабочем участке механической ха­рактеристики, является наиболее экономичной, так как она соот­ветствует малым значениям скольжения, а следовательно, и мень­шим значениям электрических потерь в обмотке ротора .

Применение формулы (13.14) для расчета механических ха­рактеристик асинхронных двигателей не всегда возможно, так как параметры схемы замещения двигателей обычно не приводятся в каталогах и справочниках, поэтому для практических расчетов обычно пользуются упрощенной формулой момента. В основу этой формулы положено допущение, что активное сопротивление обмотки статора асинхронного двигателя , при этом

 

. (13.21)

 

Критическое скольжение определяют по формуле

 

. (13.22)

 

Расчет механической характеристики намного упрощается, если его вести в относительных единицах . В этом случае уравнение механической характеристики имеет вид

 

. (13.23)

 

Рис. 67. Механическая ха­рактеристика асинхронного двигателя типа 4А160М4УЗ

 

Применение упрощенной формулы (13.23) наиболее целесо­образно при расчете рабочего участка механической характери­стики при скольжениях , так как в этом случае величина ошибки не превышает значений, допустимых для технических расчетов. При скольжениях ошибка может достигать 15-17%.

 



Дата добавления: 2016-10-18; просмотров: 10152;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.