ТАРАУ. Астрофизика элементтері. 10 глава


Күн қатты дене сияқты айналмайтындықтан, гелиографиялық координаттар жүйесін оның бетіндегі барлық нүктелерімен қатаң байланыстыруға болмайды. Шартты түрде гелиографиялық меридиандарды гелиографиялық ендіктері ±160 тең нүктелермен қатаң байланыстырады. Бас гелиографиялық меридиан ретінде 1.01.1954 жылдың 0 сағатында (бүкіләлемдік уақыт бойынша) гелиоэкватордың эклиптикамен қиылысу нүктесінен өткен меридианды алады.

Келтірілген мәндердің барлығы Күн бетінің айналуын сипаттайды. Ішкі қабаттардың айналуы тікелей түрде бақыланбайды, оны 1980 жылдары даярланған, жер сілкіністерінен пайда болатын толқындарды тіркеу арқылы Жер қойнауын зерттеудің әдісіне ұқсастығы себебінен гелиосейсмология деп аталатын әдіс көмегімен таниды. Бұл әдістің идеясы мынада. Күннің конвекция алқабындағы газдың турбуленттік қозғалысымен тудырылатын дыбыс толқындары болып табылатын күн затының тербелістер периодының күн қойнауындағы шарттарға байланысты мәндерін (3-12 минут) есептеуге де, спектрлік сызықтар өзгерістерін бақылап өлшеуге де болады. Өлшенген және есептелген мәндерді салыстыру арқылы Күн қойнауындағы шарттар туралы мәліметті алуға болады. Бұл әдіс көмегімен барлық конвекция алқабындағы бұрыштық жылдамдық беттегі жылдамдыққа өте жақын екені, ол тек Күн центрінен қашықтық өсуімен экваторлық аймақтарда аздап кемитіні, ал полюстік аймақтарда - өсетіні анықталған. Сәулелендіретін ядроның бұрыштық жылдамдығы әлі де анықталмаған, бірақ ядро қатты дене сияқты, беттін орташа бұрыштық жылдамдығына жуық жылдамдықпен айналатынына көрсететін деректер бар.

Күн айналуы осындай сипатта болғандығының себебі әлі де толығымен түсініксіз. Жалпы, Күннің дифференциалды түрдегі айналуы конвекциялық аймақтағы газдың (плазманың) қозғалысымен байланысы белгілі.

3.2.3. Күн құрылысы

Күннің жалпы құрылысы 3.1 суретте көрсетілген. Келтірілген мәндер жуықталған болып табылады, кейбір әдебиеттерде өзгеше мәндер де келтіріледі.

 

 

3.1 сурет – Күн қабаттарының физикалық сипаттамалары: r - тығыздық, Т - температура, р - қысым, n - 1 см3-ғы бөлшектер саны. Фотосфера мен хромосфера суретте нақтылыдан көрі қалындау салынып көрсетілген.

3.2.4. Күннің ішкі қабаттары

Басқа да кез-келген жұлдыз сияқты, Күн гравитация ықпалы себебінен сығылуға ұмтылады. Гравитация әсеріне Күннің ішкі қабаттарының өте жоғары температурасы мен тығыздығына байланысты пайда болатын жоғары қысым (дәлірек айтсақ, қысым градиенті) қарсы әрекет етеді. Күн орталығындағы температура Т»1,6&107 К, r»160 г/см3, қысымы р»2,2&1016 Па > 1011 атм. Мұндай жоғары температура ұзақ уақыт ішінде тек сутегінен гелий синтезінің ядролық реакцияларымен сүйемелдене алады. Бұл реакцияларға керекті шарттар Күн қойнауларында бар. Аталмыш температура мен қысым жағдайында бөлек ядролар орасан зор жылдамдықпен қозғалады. Мысалы, сутегі үшін бұл жылдамдық жүздеген км/с-ке жетеді. Сонымен қатар зат тығыздығы өте үлкен болғандықтан, ядролық соқтығулар айтарлықтай жиі болады. Олардың кейбіреулері термоядролық реакциялар басталуына қажетті атом ядроларының тығыз жақындауына әкеледі. Бұл реакциялар Күн энергиясының негізгі көзі болып табылады.

Бұл жерде мынаны айтсақ жөн болады. Аталмыш реакциялар барысында нейтриноның өте қарқынды ағыны шығарылуға тиісті, бірақ сонғы бірнеше онжылдықтар ішінде өткізілген тәжірибелер нәтижесінде анықталған нейтрино ағыны Күн ядросының температурасы жоғарыда айтылғандай болса байқалуға тиістіден анағұрлым аз болып шықты. Бұл қайшылықты шешу үшін бірнеше болжау айтылды. Олардың біреуі мынадай. Электрмагниттік сәулелену бізге Күн ядросы туралы ~1 млн жылға кешіккен ақпаратты әкеледі, өйткені көпеселі жұтылу және қайта сәулелендірілу құбылысы нәтижесінде сәулелену Күннің орталық аймақтарынан бетіне дейін тек сол 1 млн жыл ішінде жетеді. Ал не күшті, не әлсіз әрекеттесуге қатыспайтын нейтриноның әрекеттесу қимасы орасан аз болады, мысалы, жылулық нейтриноның қорғасындағы еркін жол ұзындығы ~~1020 см, не 100 жарықтық жыл (ж.ж). Сондықтан нейтрино Күнді лезде дерлік өтіп шығады да, тікелей Күн қойнауына көз жіберуге мүмкіндік береді. Ядролық реакциялар қарқындылығы, демек бұл реакциялар нәтижесінде пайда болатын нейтрино ағыны, температураға тәуелді: температура кеміген сайын, реакциялар саны азаяды. Сонымен, нейтриноның аз ағыны Күн ядросындағы температурасы электрмагниттік сәулелену көрсететіндіктен әлдеқайда аз екенін дәлелдейді деген қорытындыны жасауға болады. Басқа болжау - қазіргі заманғы Күн және Күн үлгісіндегі жұлдыздар физикасының түсініктерін толығымен қайта қарау керек, бұл жұлдыздар энергиясының көзі – ядролық реакциялар емес. Тағы бір болжау нейтрино спинінің солдан оңға төнкерілуімен байланысты. Тәжірибеде тек сол жақтағы нейтрино тіркеледі, сондықтан аталмыш төнкерілу шынында да болса, өлшенетін ағын жіберілетін ағыннан аз болады. Бірақ мұндай құбылыс шынында да жүзеге асырылса, ол нейтриноның тыныштық массасы нөльге тең емес екенін дәлелдейді. Ал бұл дерек элементар бөлшектер физикасының түсініктерімен қатар Әлем туралы түсініктердің қайта қарауына әкеледі.

Ядролық реакциялар мен олармен қосақталып жүретін энергия шығарылуы Күн ядросы, не энергия шығарылу аумағы деп аталатын Күннің орталық бөлігінде, орталықтан ~0,3RКүн қашықтыққа дейін жүреді. Орталықтан 0,3RКүн көп қашықтықтарда күн затының температурасы мен қысымы мынадай мәндерге дейін кемиді: Т<5&106 K, p<1010 атм. Мұндай шарттарда ядролық реакциялар өте алмайды. Сондықтан бұл қабатта тек үлкендеу тереңдіктерде γ-кванттар түрінде шығарылған сәулелену жеке атомдармен жұтылып және қайта сәулелендіріліп сыртқа қарай тасымалданады. Температура мен қысым бұл аймақтағыдай болғанда атомдар (негізімен сутегі) иондалған күйде болады. Сутегі толығымен иондалған болса, сәулелену жұтылуы негізінен сутегіден ауырырақ элементтер иондарының фотоиондалуымен байланысты болады. Бірақ мұндай элементтер Күн қойнауында аз болады. Күн қойнауынан қозғалатын фотондар жарым-жартылай еркін электрондармен жұтылады. Бірақ Күннің қарастырылып тұрған аймақтың иондалған газындағы фотондардың кейінгі қайта сәулеленусіз болатын жиынтық жұтылуы аз болып шығады, сондықтан энергия тасымалдауы сәулеленумен жүзеге асырылады. Бұл аймақ сәулелі тасымалдау алқабы деп аталады.

Күн орталығынан алшақтаған сайын газдың температурасы мен тығыздығы азаяды, 0,7RКүн -0,8RКүн көп қашықтықтарда атомдар (тереңірек қабаттарда - гелий атомдар, бетке жақынырақ - сутегі атомдар) бейтарап күйде бола алады. Мұндағы параметрлер: Т»106 К, р»106 атм, r»10-2 г/см3. Бейтарап атомдар, әсіресе сутегі атомдар, пайда болғанда олардың фотоиондалуымен байланысты жұтылу артады. Сәулелену арқылы болатын энергия тасымалдауы қиынға соға бастайды. Ал энергияның келіп түсуі, әрине, жалғаса береді. Яғни, энергия тасымалдауының басқа механизмінің қосылуы қажет болады. Бұл аймақта заттың іріауқымдық конвекциялық қозғалыстары дамиды. Сөйтіп, Күннің сыртқы көрнекі қабаттар астында, ~0,3RКүн бойында, сәулелі тасымалдау басылып, конвекциялық тасымалдауға ауысатын конвекциялық алқап түзіледі.

3.2.5. Күн ішіндегі конвекция

Конвекция дегеніміз - төменнен көтерілетін жылу ағынының әсерінен болатын ауырлық күштер өрісіндегі сұйықтықтың, не газдың қозғалысы. Көтергіш күш болып Архимед күші (FA=gDrV мұндағы g – еркін түсу үдеуі, Dr - көтеріліп (не түсіп) жатқан V көлем мен қоршаған орта тығыздықтарының айырмасы) табылады. Dr шамасы V көлем мен қоршаған ортаның температура айырмасымен түсіндіріледі. V көлеміндегі зат қоршаған орта затынан ыстығырақ болу керек. Конвекция пайда болу үшін көтеріліп тұрған элементтің температурасының азаюы сол биіктіктерде болатын қоршаған ортаның температура азаюынан баяуырақ болуы қажет, өйткені элементтің температурасы ортаның температурасымен теңессе, бұл екеуінің тығыздығы да теңеседі де, Архимед күші нөлге айналады. Егер элемент пен орта арасында жылуалмасу жүрмесе, онда бұл адиабаттық процесс болады да, конвекция пайда болуы шартын былайша жазуға болады: ÑTад< ÑТ. Бірақ нақты жағдайда ортаның κ жылу өткізгіштігі мен ν тұтқырлығының бар болуына байланысты көтеріліп тұрған элементтің температурасы қоршаған ортаның температурасымен тез теңеседі де, элемент айтарлықтай көтеріліп үлгірмейді. Сондықтан іріауқымдық конвекциялық қозғалыс пайда болу үшін элементтегі және қоршаған ортадағы температуралар айырмасы кейбір шектік мәннен көп болуы қажет. Бұл шарт R > Rс түрінде жазылады, мұндағы өлшемсіз R саны (Рэлей саны) мынаған тең:

,

мұндағы d - қабат қалындығы, b - газ үшін 1/T тең жылулық кеңеюдің көлемдік коэффициенті. Әдетте Rс~103. Конвекция болмаған жағдайда жұлдыздардағы температураның сыртқы градиенті (ÑТ) сәулелі жылу өткізгіштігімен анықталады. Жұлдыз заты иондалмаған болса (толығымен бейтарап болса), әдетте R £ Rс болады да, конвекция байқалмайды. Ал газ иондалу күйін көтерілу барысында айтарлықтай өзгертсе, онда жағдай басқаша болады. Жұлдыздар затының негізгі құраушылары (сутегі мен гелий) жарым-жартылай иондалған болса, көтеріліп, не түсіп жатқан элементтегі температура аз өзгереді екен. Бұл жағдайда көтеріліп тұрған элементтегі температура азаюымен газ рекомбинациясы басталады, ал бұл құбылыс барысында энергия шығарылады. Сол бөлінетін энергия көтеріліп тұрған элементті жылытып, оның температурасын тұрақты дерлік түрде сақтайды. Түсу мен сығылу барысында шығарылатын энергия газдың жылынуына емес, оның иондалуына жұмсалады (бұл энергия жағынан тиімді болады), сондықтан түсіп жатқан элементтегі температура өте баяу өседі. Қарастырылған құбылыс мұздың еруіне ұксайды: мұз (біздің жағдайда – иондалмаған сутегі) бар болғанша судың (бізде – иондалған сутегінің) температурасы өзгермей дерлік, 00С жуық болып қала береді. Мұндай шарттағы ішкі (элементтегі) температура градиенті өте аз болады, сөйтіп атмосферадағы аз температура градиентінің өзі де сыртқы және ішкі температураның жеткілікті айырмасын қамтамасыз етеді, яғни көтергіш күш үлкен болуына әкеледі. Рэлей саны мұндай шарттарда сындық мәннен көп болады да, конвекция басталады. Сутегі мен гелий толығымен иондалған, не бейтарап болған кезде конвекция тоқтайды. Сонымен, Күннің және Күн үлгісіндегі жұлдыздардың конвекциялық алқабы – жарым-жартылай иондалған сутегі мен гелийдің алқабы.

 

3.2.6. Күн атмосферасы

Конвекциялық аумақтан жоғары күн атмосферасы деп аталатын қабат орналасқан. Оның сәулеленуін біз тікелей бақылай аламыз. Күн атмосферасы негізімен үш бөліктен (қабаттан) тұрады. Олар - фотосфера, хромсфера, тәж.

Фотосфера – Күн атмосферасының ең төменгі орасан жұқа қабаты. Оның қалындығы - 1/2000RКүн ≈ 350 км. Ол бізге келетін күн энергиясының бәрін дерлік сәулелендіреді: фотосфера сәулеленуі одан жоғары орналасқан хромосера мен тәждің сәулеленуінен 10 000 кем емес есе көп. Хромосфера мен тәж фотосфераның үздіксіз оптикалық сәулеленуін еркін дерлік жібереді, сондықтан фотосфера Күнді тікелей бақылау жүрісінде Күннің ақ жарықтағы көрнекі беті сияқты көрінеді. Фотосферадағы температура ~6000 К, қысым - ~0,1 атм. Температура мұндай болғанда тек иондану потенциалдары үлкен емес химиялық элементтер иондалған күйде болады (мысалы, натрий, калий, кальций). Басқа элементтер, олар ішінде сутегі мен гелий, көбінесе бейтарап күйде қалады. Осыған байланысты фотосферада конвекция тоқтайды, ал энергия тағы да сәулелі тасымалдау арқылы беріледі. Фотосферадағы зат тығыздығы биіктік өсуімен тез азаяды, сондықтан күн атмосферасының сыртқы қабаттары өте сиретілген. Фотосфера затының температурасы да биіктікпен кемиді, фотосфераның сыртқы қабаттарының температурасы ~4500 К. Бірақ бұл мән Күн үшін минимальды болып табылады.

Жоғарырақ жатқан қабаттарда температура қайта өсе бастайды. Хромосферада әуелі сутегінің, одан кейін гелийдің де иондануына әкелетін температураның онмындаған Кельвинге дейін өсуі байқалады. Мұндағы қысым - ~10-6 атм. Сөйтіп, фотосфера – бейтарап сутегінің Күндегі жалғыз аймағы.

Хромосфераның жоғарғы қабаттарда тағы бір әдеттен тыс кенет температураның ~1 млн К-ге дейінгі көтерілуі байқалады. Мұнда тәж – Күн атмосферасының ең сыртқы және сиретілген қабаты басталады. Ішкі тәждің температурасы - ~1,5 млн К, қысымы - 6&10-8 атм.

Тәждің мұндай жоғары температурасы көптеген тәуелсіз анықтамалармен расталады. Мысалы, тәждің бірнеше эмиссиялық сызықтар – жасыл (толқын ұзындығы l=5303 ), қызыл (l=6374 ), т.б. тоғыздан он төртке дейін электрондарынан айырылған жоғары иондалған Fe, Nі және Ca атомдарымен жіберілген сызықтар екені табылды. Электрондардың үзілуі ауыр (сондықтан аз қозғалатын) қозғалғыш электрондармен соқтығу нәтижесінде болғандықтан, электрондардың кинетикалық энергиясы өте жоғары болу керек (~1,5&106 К тең электрондық температураға сәйкес болу керек). Одан басқа, барометрлік формула бойынша тәждің өте үлкен бойлығы, тығыздығының биіктікпен баяу азаюы тек Т»1,5&106 К жағдайда байқалуы мүмкін. Радиоауқымындағы толқын ұзындығы 1 м көп толқындар үшін тәж мөлдір емес болады да, температурасы 106 К дене сияқты сәлеленуді шығарады. Қысқатолқынды (l=400 ) аймақта Т»1,5&106 К сиретілген газдың спектріне сәйкес иондардың негізгі (резонанстық) сызықтардың жиынтығы байқалады. Жылдамдықтарының жылулық шашылуына байланысты жоғарыиондалған FeX-FeXІV атомдарының спектрлік сызықтарының ендігі 106 К көп температураға сәйкес екен.

Тәж температурасының осындай жоғары болғаны күн желінің қалыптасуында шешуші ролді атқарады, сондықтан Күннің сыртқы атмосферасының қыздырылу механизмдерін бөлек қарастырайық.

 

3.2.7. Күн тәжінің қыздырылу механизмдері

Қазіргі заманғы түсініктер бойынша Күн атмосферасының сыртқы қабаттарының мұндай күшті қыздырылуы конвекциялық аумақтың жоғарғы бөлігінде пайда болатын механикалық және гидромагниттік соққы толқындар энергияны ішкі қабаттардан хромосфера мен тәжге тасымалдайтынымен себептелінеді.

Конвекция ұяшықтар түріндегі конвекиялық элементтерге бөлініп жүреді. Ұяшық өсі бойымен газ көтеріліп, шеттерінде түсіп тұрады. Егер жұлдыздағы конвекциялық аумақ қалың болса, онда ол қалындықтары біртекті атмосфераның (яғни тығыздығы шамамен е»2,7 есе өзгеретін газ қабатының) қалындығына жақын қабаттарға бөлінеді. Температура, онымен бірге, барометрлік формула бойынша, біртекті атмосфераның қалындығы да үлкен болатын конвекциялық аумақтың түбінде үлкен ұяшықтар түзіледі, олардың көлденең өлшемі ~1/2(Rж, мұндағы Rж – жұлдыз радиусы, келесі қабаттарда ұяшықтар кішірек болады, ең жоғарғы қабатта олардың өлшемі бірнеше жүз километрге дейін азаяды.

Конвекциялық аумақтың түбінде конвекцияның жылдамдығы төмен, шамамен бірнеше ондық м/с, болады. Биіктік өскен сайын бұл жылдамдық көбейеді. Конвекциялық аумақтың ең жоғарғы, фотосферамен шекаралас қабатынан энергия сыртқа қарай сәулелену арқылы да шығарыла алады, сондықтан бұл қабатта температураның қатты азаюы орын алады да, мұның нәтижесінде конвекциялық аумақтың жоғарғы бөлігінде температураның көтерінкі градиенті пайда болады. Ал бұл фотосфера астындағы конвекция қозғалысының жылдамдығы ерекше жоғары, Күн үшін 1-2 км/с тең мәніне жетеді, яғни конвекциялық алқапта конвекция қарқындылығы айрықша күшті болатын жоғарғы қабатын бөлуге болады.

Фотосфераның бейтарап газында, иондау энергиясының қорына ие болмағандықтан, ортаға қатынасты орнықты температура айырмашылығы бар элементтер пайда бола алмайды. Сонымен қатар, сәулелелендіруден болатын энергия шығындары нәтижесінде температура кенет азаяды да, оның жоғарыға қарай ортаюының жылдамдығы баяуланады. Бұл екі себептен конвекциялық алқаптың ең жоғарғы қабаттарында, тікелей фотосфераның астында конвекция шұғыл тоқтайды да, конвекциялық қозғалыстар кенет тежеледі. Сөйтіп, фотосфера төменнен конвекциялық элементтермен бомбылап тұратын сияқты болып шығады. Бұл соғулар нәтижесінде фотосфера меншікті тербелістерінің жиіліктігіне сай мерзіммен (~5 мин) тербеле бастайды. Бұл фотосферада пайда болған тербелістер мен ұйытқулар табиғаты бойынша ауадағы дыбыс толқындарға жақын толқындарды туғызады. Олар жоғарыға қарай тараған сайын зат тығыздығы кемиді де, толқынмен тасымалданатын энергия саны азайған бөлшектер арасында үлестіріледі. Мұның нәтижесінде толқындар жоғарыға қарай таралғанда, олардың амплитудасы бірнеше километрге дейін артады да (толқын қарқындылығы І~a2, мұндағы а – толқын амплитудасы) толқындар соққыларға айналады.

Соққы толқын дегеніміз газ асадыбысты жылдамдықпен (яғни орта бөлшектерінің жылулық жылдамдығынан жоғары жылдамдықпен) қозғалған кезде пайда болатын, ішінде газдың тығыздығы, қысымы, температурасы, иондау дәрежесі мен басқа да сипаттамаларының кенет, секірмелі түрде өзгеруі байқалатын толқын. Ішінде газ сипаттамалары кенет өзгеретін жұқа қабат (ұйытқыған және ұйытылмаған газды бөлетін қабат) соққы толқынның шебі деп аталады.

Соққы толқындар қалай пайда болатынын түсіну үшін мына мысалды қарастырайық. Түтікшеге қамалған газды алып, оған поршень кіргізе бастайық. Поршень алдындағы газ қозғала бастап, сығылады да, қысым градиенті пайда болады, оның нәтижесінде поршень алдынан кейінгі қабаттар да қозғала бастайды. Қозғалыс күйі газда дыбыс жылдамдығымен беріледі. Егер поршень жылдамдығы дыбыс жылдамдығынан аз болса, онда дыбыс толқыны поршеннен тез қозғалып, одан кетеді де, біртіндеп түтікшедегі газдың бәрі шамамен поршень жылдамдығымен қозғала бастайды. Егер поршень жыдламдығы дыбыс жылдамдығынан көп болса, онда дыбыс толқыны поршеннен кетуге және газ сығылуы аймағын үлкен қашықтыққа жылжытуға үлгірмейді, сондықтан газ тек тікелей поршень алдында сығылады. Поршень алдындағы газдың тығыздығы өскен сайын, оның температурасы да өседі (бұл процесті адиабаттық деп қарастыруға болады), сондықтан бұл аймақтағы дыбыс жылдамдығы өседі , мұндағы vдыб – дыбыс жылдамдығы, g - газдың адиабата көрсеткіші, р - қысым, r - тығыздық, R – газдың универсал тұрақтысы, Т – температура, М – молярлық масса), бір кезде ол поршень жылдамдығынан асып кетеді де, сығылу аймақтың поршеннен алға қарай жылжуы мүмкін болады. Сонымен, газ екі бөлімнен тұрған болады: біреуі, поршенге тірелген, сығылған болады, басқасы ұйытқымаған және қозғалмайтын болып қалады. Қозғалмайтын газ қабатының соңынан қабаты поршень алдындағы газдан түрткі алып қозғала бастайды. Қозғалып тұрған және қозғалмаған газ арасындағы шекара айқын болады, ол соққы толқынның шебі болып табылады. Соққы толқын шебінің өтуі газ қасиеттерінің кенет өзгеруіне әкеледі, олар секірмелі түрде өседі.

Дыбыс толқыны оның амплитудасы артса да соққыға айналуы мүмкін. Бұның себептерін түсіну үшін, жалпы дыбыс толқын дегеніміз не екенін есімізге түсірейік. Ол газ бөлшектері тербеле бастағанда пайда болатын, кеңістікте таралатын кезектесетін сығылу және сиретілу газ аймақтары. Және де газ сығылған аймақтарда vдыб газ сиретілген аймақтардағыдан көрі (және ұйтылмаған ортадағыдан көрі) көбірек болады (газ сығылған аймақтарда температура өсетінін есіңізде ұстап, дыбыс жылдамдығы үшін формуланы қараңыз). Толқынның амплитудасы өскен сайын сығылу аймақтарындағы (өркештердегі) газдың тығыздығы, демек температурасы да, өсе береді, өйткені бұл аймақта жиналған бөлшектердің саны өсе береді (олар бұл аймаққа үлкендеу қашықтықтан жиналады). Ал сиретілу аймақтарындағы газ тығыздығы, демек температурасы да, амплитуда өскенде кемиді. Яғни, амплитуда өскен сайын сығылу аймақтарындағы vдыб өсе беріп, сиретілу аймақтарындағы vдыб азая береді. Демек, амплитуда өскен сайын сығылу аймақтары сиретілу аймақтарына жақындай бастайды да, амплитуда белгілі мәнге дейін артқанда, қуып жетеді.

Сонда, амплитудасы үлкен емес дыбыс толқыны таралып жатқан газ тығыздығының кеңістіктегі лездік үлестірілуін графикке тұрғызсақ, мынаны көреміз (жоғарғы сурет). Яғни, тығыздық кеңістікте біртіндеп өзгереді.



Дата добавления: 2021-01-11; просмотров: 314;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.014 сек.