Укрупнение элементов
Сборные железобетонные элементы конструкций зданий необходимо укрупнять. При монтаже зданий из укрупненных элементов сокращается число монтажных операций, уменьшается число стыковых сопряжений, повышается степень заводской готовности элементов, а следовательно, уменьшается объем отделочных работ на площадке. Так, для гражданских зданий рационально панели перекрытий выполнять размером на комнату, панели стен — высотой в этаж и шириной на комнату.
КОНСТРУКЦИИ ОДНОЭТАЖНЫХ ПРОМЫШЛЕННЫХ ЗДАНИИ
§ XIII.1. КОНСТРУКТИВНЫЕ СХЕМЫ ЗДАНИЙ
1. Элементы конструкций
Для металлургической, машиностроительной, легкой и других отраслей промышленности возводятся (рис. XIII.1,а). Конструктивной и технологической особенностью одноэтажные каркасные здания является оборудование их транспортными средствами — мостовыми и подвесными кранами. Мостовые краны перемещаются по специальным путям, опертым на колонны; подвесные краны перемещаются по путям, подвешенным к элементам покрытия.
Рис' X1U.1. Одноэтажное промышленное здание с мостовыми кранами
а - конструктивный поперечный разрез; б - схема поперечной рамы, в- схема продольной рамы
Рис. XI 11.2. Одноэтажные промышленные здания с плоским покрытием
1 — длинномерные плиты покрытия; 2 — продольные балки
К элементам конструкции одноэтажного каркасного здания с балочным покрытием относятся колонны (стойки), заделанные в фундаментах, ригели покрытия (балки, фермы, арки), опирающиеся на колонны, панели покрытия, уложенные по ригелям, подкрановые балки, световые или аэрационные фонари. Основная конструкция каркаса — поперечная рама, образованная колоннами и ригелями.
Пространственная жесткость и устойчивость одноэтажного каркасного здания достигаются защемлением колонн в фундаментах. В поперечном направлении пространственная жесткость здания обеспечивается поперечными рамами, в продольном — продольными рамами, образованными теми же колоннами, элементами покрытия, подкрановыми балками и вертикальными связями (рис. XIII.1,6, в).
Одноэтажные производственные здания могут быть также с плоским покрытием без фонарей.
Компоновка здания
Сетка колонн одноэтажных каркасных зданий с мостовыми кранами в зависимости от технологии производственного процесса может быть 12X18, 12X24, 12X30 или 6X18, 6X24, 6X30 м. Шаг колонн принимается преимущественно 12 м, если при этом шаге используются стеновые панели длиной 6 м, то по наружным осям кроме основных колонн устанавливают промежуточные (фахверковые) колонны. При шаге колонн 12 м возможен шаг ригелей 6 м с использованием в качестве промежуточной опоры подстропильной фермы (рис. XIII.4). В целях сохранения однотипности элементов покрытия колонны крайнего ряда располагают так, чтобы разбивочная ось ряда проходила на расстоянии 250 мм от наружной грани колонны (рис. XIII.5). Колонны торцов здания смещают с поперечной разбивочной оси на 500 мм (рис. XII 1.6,б). Продольный температурный шов выполняют, как правило, на спаренных колоннах со вставкой (рис. XIII.6, в), при этом колонны у температурного шва имеют привязку к продольным разбивочным осям 250 мм (или нулевую при 6м).
Рис. XII 1.4. Конструктивные схемы здания при шаге колонн
а- 6 м с подстропильными фермами; б - 12 м без подстропильных ферм
Рис. XIII.5. Привязка элементов конструкций к разбивочным осям на поперечном разрезе
Поперечные рамы
Ригели поперечных рам по своей конструкции могут быть сплошными или сквозными, а соединение их со стойками жесткое или шарнирное. Жесткое соединение ригелей и колонн рамы приводит к уменьшению изгибающих моментов, однако при этом не достигается независимая типизация ригелей и колонн рамы, так как нагрузка, приложенная к колонне, вызывает изгибающие моменты и в ригеле, а нагрузка, приложенная к ригелю, вызывает изгибающие моменты и в колоннах (рис. Х1П.7,а). При шарнирном соединении возможна независимая типизация ригелей и колонн, так как в этом случае нагрузки, приложенные к одному из элементов, не вызывают изгибающих моментов в другом (рис. XIII.7,б). Шарнирное соединение ригелей с колоннами упрощает форму и конструкцию стыка, отвечает требованиям заводского производства.
Конструкции одноэтажных рам с шарнирными узлами приняты в качестве типовых.
Сплошные колонны применяют при кранах rpyзоподъемностью до 30 т и относительно небольшой высоте здания; сквозные колонны — при кранах грузоподъемностью 30 т и больше и высоте здания более 12 м. Размеры сечения колонны в надкрановой части назначают с учетом опирания ригелей, непосредственно на торец колонны без устройства специальных консолей. Высота сечения принимается: для средних колонн Н2=500 или 600 мм, для крайних колонн Н2=380 или 600 мм; ширина сечения средних и крайних колонн b=400...600 мм (большие размеры сечения колонны принимают при шаге 12 м). Сквозные колонны имеют в нижней подкрановой части две ветви, соединенные короткими распорками — ригелями. Для средних колонн в нижней подкрановой части допускают смещение оси ветви с оси подкрановой балки и принимают высоту всего сечения h1 = 1200...1600мм, для крайних колонн принимают h1 = 1000...1300 мм. При этом принимают размеры высоты сечения ветви h = 250 или 300 мм и ширины сечения ветви b = 500 или 600 мм. Кроме того, b= (1/25... 1/30)Н.
Расстояние между осями распорок принимают (8— 10)h. Распорки размещают так, чтобы размер от уровня пола до низа первой надземной распорки составлял не менее 1,8 м и между ветвями обеспечивался удобный проход. Нижняя распорка располагается ниже уровня пола. Высоту сечения распорки принимают (1,5—2) h,
Соединение двухветвенной колонны с фундаментом осуществляют в одном общем стакане или же в двух отдельных стаканах; во втором соединении объем укладываемого на монтаже бетона уменьшается (рис. XIII. 10). Глубину заделки колонны в стакане фундамента принимают равной большему из двух размеров:
Рис. XIII.7. К выбору рациональной конструкции поперечной рамы; эпюры моментов
а - при жестком соединении ригеля с колонной; б - при шарнирном соединении
Система связей
Система вертикальных и горизонтальных связей имеет назначение: 1) обеспечить жесткость покрытия в целом; 2) придать устойчивость сжатым поясам ригелей поперечных рам; 3) воспринять ветровые нагрузки, действующие на торец здания; 4) воспринять тормозные усилия от мостовых кранов. Система связей работает совместно с основными элементами каркаса и повышает пространственную жесткость здания.
Рис. XIII.13. Схема деформаций каркаса здания от горизонтальных нагрузок и расчетные схемы
Вертикальные связи. При действии горизонтальных нагрузок в продольном направлении здания (ветер на торец, торможение кранов и т. д.) усилия воспринимаются продольной рамой, ригелем которой является покрытие. Сопряжение между плитами покрытия и колоннами осуществляется через балки или фермы, обладающие малой жесткостью из своей плоскости. Поэтому при отсутствии связей горизонтальная сила, приложенная к открытию, может привести к значительным деформациям ригелей из их плоскости (рис. XIII.13,а), а горизонтальная сила, приложенная к одной из колонн, может вызвать существенную деформацию данной колонны без передачи нагрузки на остальные колонны (рис. XIII. 13,б). Система вертикальных связей по линии колонн здания предусматривается для того, чтобы создать жесткое, геометрически изменяемое в продольном направлении покрытие.
Вертикальные связевые фермы из стальных уголков устанавливают в крайних пролетах блока между колоннами и связывают железобетонными распорками или распорками из стальных уголков по верху колонн (рис. XIII.14,а). Решетка вертикальных связевых ферм для восприятия горизонтальных сил, действующих слева или справа, проектируется крестовой системы. При небольшой высоте ригеля на опоре (до 800 мм) и наличии опорного ребра, способного воспринять горизонтальную силу, продольные связи выполняют только в виде распорок по верху колонн. В этом случае стальные опорные листы ригеля должны быть соединены сваркой с закладным листом колонны, рассчитанной на момент M = Wh и опорное давление F (см. рис. XIII.13,в). Вертикальные связи между колоннами из стальных уголков устанавливают в каждом продольном ряду в середине температурного блока. Эти связи приваривают к стальным закладным деталям колони.
Горизонтальные связи по нижнему поясу ригелей. Ветровая нагрузка, действующая на торец здания, вызывает изгиб колонн торцевой стены. Для уменьшения расчетного пролета этих колонн покрытие используют как горизонтальную опору (рис. XIII.13,г).
В зданиях большой высоты и со значительными пролетами рационально создать горизонтальную опору для торцевой стены и в уровне нижнего пояса ригеля устройством горизонтальной связевой фермы (рис. ХШ.14,б).
Дополнительная опора для торцевой стены возможна также в виде горизонтальной фермы в уровне верха подкрановых балок. Горизонтальные связи по нижнему поясу выполняют из стальных уголков, образующих вместе с нижним поясом крайнего ригеля связевую ферму с крестовой решеткой.
Опорное давление горизонтальной связевой фермы передается через вертикальные связи на все колонны блока и дальше на фундаменты и грунты основания.
Горизонтальные связи по верхнему поясу ригелей. Устойчивость сжатого пояса ригеля поперечной рамы из своей плоскости обеспечивается плитами покрытия, прикрепленными сваркой закладных деталей к ригелям. Чтобы уменьшить расчетный пролет сжатого пояса ригеля, по оси фонаря устанавливают распорки, которые в крайних пролетах температурного блока прикрепляют к горизонтальным фермам из стальных уголков (рис. XIII.14,в).
Рис. XIII.14. Схемы связей покрытия
а - вертикальные связи; б - горизонтальные связи по нижнему поясу; в - то же, по верхнему поясу; г — связи фонаря
лекция 2
§ XIII.2. РАСЧЕТ ПОПЕРЕЧНОЙ РАМЫ
1. Расчетная схема и нагрузки
Поперечная рама одноэтажного каркасного здания испытывает действие постоянных нагрузок от массы покрытия и различных временных нагрузок от снега, вертикального и горизонтального давления мостовых кранов, положительного и отрицательного давления ветра и др. (рис. XIII.19,а).
В расчетной схеме рамы соединение ригеля с колонной считается шарнирным, а соединение колонны с фундаментами — жестким. Длину колонн принимают равной расстоянию от верха фундамента до низа ригеля. Цель расчета поперечной рамы — определить усилия в колоннах и подобрать их сечения. Ригель рамы рассчитывают независимо как однопролетную балку, ферму или арку.
Постоянная нагрузка от массы покрытия передается на колонну как вертикальное опорное давление ригеля F. Эту нагрузку подсчитывают по соответствующей грузовой площади. Вертикальная нагрузка приложена по оси опоры ригеля и передается на колонну при привязке наружной грани колонны к разбивочной оси 250 мм с эксцентриситетом: в верхней надкрановой части е=0,25/2 =0.125 (при нулевой привязке);
в нижней подкрановой части e=(h1—h2)/2—0,125 (при нулевой привязке e=(hl—h2/2); при этом возникают моменты, равные M=Fe.
Рис. X1I1.I9. Расчетная схема поперечной рамы с крановыми нагрузками
Временная нагрузка от снега устанавливается в соответствии с географическим районом строительства и профилем покрытия. Она также передается на колонну как вертикальное опорное давление ригеля F и подсчитывавается по той же грузовой площади, что и нагрузка от массы покрытия.
Временная нагрузка от мостовых кранов определяется от двух мостовых кранов, работающих в сближенном положении.
Вертикальная нагрузка на колонну вычисляется по линиям влияния опорной реакции подкрановой балки, наибольшая ордината которой на опоре равна единице. Одна сосредоточенная сила от колера моста устанавливается на опоре, остальные силы располагаются в зависимости от типа крана. Максимальное давление на колонну
при этом давление на колонну на противоположной стороне
Вертикальное давление от кранов передается через подкрановые балки на подкрановую часть колонны с эксцентриситетом, равным для крайней колонны
е=0,25 +λ—0,5 hн„ (при нулевой привязке е=λ,—0,5 hн), для средней колонны е=λ
(рис. XIII.19,в). Соответствующие моменты от крановой нагрузки
Горизонтальная нагрузка на колонну от торможения двух мостовых кранов, находящихся в сближенном положении, передается через подкрановую балку по тем же линиям влияния, что и вертикальное давление:
Временная ветровая нагрузка. устанавливается в зависимости от района и высоты здания на 1 м2 поверхности стен и фонаря.
С наветренной стороны действует положительное давление, с подветренной - отрицательное. Стеновые панели передают ветровое давление на колонны в виде распределенной нагрузки p= ωa, где а — шаг колонн.
Неравномерную по высоте здания ветровую нагрузку приводят к равномерно распределенной, эквивалентной по моменту в заделке консоли.
Ветровое давление, действующее на фонарь и часть стены, расположенную выше колонн, передается в расчетной схеме в виде сосредоточенной силы W.
2. Пространственная работа каркаса здания при крановых нагрузках
Покрытие здания из железобетонных плит, соединенных сваркой закладных деталей, представляет собой жесткую в своей плоскости горизонтальную связевую диафрагму. Колонны здания, объединенные горизонтальной связевой диафрагмой в поперечные и продольные рамы, работают как единый пространственный блок. Размеры такого блока в плане определяются расстояниями между температурными швами (рис. XIII.20,а).
Нагрузки от массы покрытия, снега, ветра приложены повременно ко всем рамам блока, при этих нагрузках пространственный характер работы каркаса здания не проявляется и каждую плоскую раму можно рассчитывать в отдельности. Нагрузки же от мостовых кранов приложены лишь к двум-трем рамам блока, но благодаря горизонтальной связевой диафрагме в работу включается остальные рамы блока, происходит пространственная работа.
Коэффициент Cdim характеризует пространственную, работу каркаса, состоящего из поперечных и продольных, рам и принимается равным при шаге 12 м Сdim=3,4; прн шаге 6м Cdim = 4..
Поперечную раму можно рассчитывать на крановые нагрузки с учетом пространственной работы каркаса здания методом перемещений с введением к реакции от единичного смещения поперечной рамы коэффициента Сdim (рис. ХШ.21),
Дата добавления: 2021-01-11; просмотров: 462;