Классификация суставов и их общая характеристика


Классификацию суставов можно проводить по следующим принципам: 1) по числу суставных поверхностей, 2) по форме суставных поверхностей и 3) по функции.

По числу суставных поверхностей различают:
1. Простой сустав (art. simplex), имеющий только 2 суставные поверхности, например межфаланговые суставы.
2. Сложный сустав (art. composite), имеющий более двух сочленовных поверхностей, например локтевой сустав. Сложный сустав состоит из нескольких простых сочленений, в которых движения могут совершаться отдельно. Наличие в сложном суставе нескольких сочленений обусловливает общность их связок.
3. Комплексный сустав (art. complexa), содержащий внутрисуставной хрящ, который разделяет сустав на две камеры (двухкамерный сустав). Деление на камеры происходит или полностью, если внутрисуставной хрящ имеет форму диска (например, в височно-нижнечелюстном суставе), или неполностью, если хрящ приобретает форму полулунного мениска (например, в коленном суставе).
4. Комбинированный сустав представляет комбинацию нескольких изолированных друг от друга суставов, расположенных отдельно друг от друга, но функционирующих вместе. Таковы, например, оба височно-нижнечелюстных сустава, проксимальный и дистальный лучелоктевые суставы и др. Так как комбинированный сустав представляет функциональное сочетание двух или более анатомически отдельных сочленений, то этим он отличается от сложного и комплексного суставов, каждый из которых, будучи анатомически единым, слагается из функционально различных соединений.

По форме и по функции классификация проводится следующим образом. Функция сустава определяется количеством осей, вокруг которых совершаются движения. Количество же осей, вокруг которых происходят движения в данном суставе, зависит от формы его сочленовных поверхностей. Так, например, цилиндрическая форма сустава позволяет производить движение лишь вокруг одной оси вращения. При этом направление данной оси будет совпадать с осью расположения самого цилиндра: если цилиндрическая головка стоит вертикально, то и движение совершается вокруг вертикальной оси (цилиндрический сустав); если же цилиндрическая головка лежит горизонтально, то и движение будет совершаться вокруг одной из горизонтальных осей, совпадающих с осью расположения головки, - например, фронтальной (блоковидный сустав).
В противоположность этому шаровидная форма головки дает возможность производить вращение вокруг множества осей, совпадающих с радиусами шара (шаровидный сустав).
Следовательно, между числом осей и формой сочленовных поверхностей имеется полное соответствие: форма суставных поверхностей определяет характер движений сустава и, наоборот, характер движений данного сочленения обусловливает его форму (П. Ф. Лесгафт).

Здесь мы видим проявление диалектического принципа единства формы и функции. Исходя из этого принципа, можно наметить следующую единую анатомо-физиологическую классификацию суставов.

Одноосные суставы.

1. Цилиндрический сустав, art. trochoidea. Цилиндрическая суставная поверхность, ось которой располагается вертикально, параллельно длинной оси сочленяющихся костей или вертикальной оси тела, обеспечивает движение вокруг одной вертикальной оси - вращение, rotatio; такой сустав называют также вращательным.

2. Блоковидный сустав, ginglymus (пример - межфаланговые сочленения пальцев). Блоковидная суставная поверхность его представляет собой поперечно лежащий цилиндр, длинная ось которого лежит поперечно, во фронтальной плоскости, перпендикулярно длинной оси сочленяющихся костей; поэтому движения в блоковидном суставе совершаются вокруг этой фронтальной оси (сгибание и разгибание). Направляющие бороздка и гребешок, имеющиеся на сочленовных поверхностях, устраняют возможность бокового соскальзывания и способствуют движению вокруг одной оси. Если направляющая бороздка блока располагается не перпендикулярно к оси последнего, а под некоторым углом к ней, то при продолжении ее получается винтообразная линия. Такой блоковидный сустав рассматривают как винтообразный (пример - плечелоктевой сустав). Движение в винтообразном суставе такое же, как и в чисто блоковидном сочленении. Согласно закономерностям расположения связочного аппарата, в цилиндрическом суставе направляющие связки будут располагаться перпендикулярно вертикальной оси вращения, в блоковидном суставе - перпендикулярно фронтальной оси и по бокам ее. Такое расположение связок удерживает кости в их положении, не мешая движению.

Двухосные суставы.

1. Эллипсовидный сустав, articulatio ellipsoidea (пример - лучезапястный сустав). Сочленовные поверхности представляют отрезки эллипса: одна из них выпуклая, овальной формы с неодинаковой кривизной в двух направлениях, другая соответственно вогнутая. Они обеспечивают движения вокруг 2 горизонтальных осей, перпендикулярных друг другу: вокруг фронтальной - сгибание и разгибание и вокруг сагиттальной - отведение и приведение. Связки в эллипсовидных суставах располагаются перпендикулярно осям вращения, на их концах.

2. Мыщелковый сустав, articulatio condylaris (пример - коленный сустав). Мыщелковый сустав имеет выпуклую суставную головку в виде выступающего округлого отростка, близкого по форме к эллипсу, называемого мыщелком, condylus, отчего и происходит название сустава. Мыщелку соответствует впадина на сочленовной поверхности другой кости, хотя разница в величине между ними может быть значительной. Мыщелковый сустав можно рассматривать как разновидность эллипсовидного, представляющую переходную форму от блоковидного сустава к эллипсовидному. Поэтому основной осью вращения у него будет фронтальная. От блоковидного мыщелковый сустав отличается тем, что имеется большая разница в величине и форме между сочленяющимися поверхностями. Вследствие этого в отличие от блоковидного в мыщелковом суставе возможны движения вокруг двух осей. От эллипсовидного сустава он отличается числом суставных головок. Мыщелковые суставы имеют всегда два мыщелка, расположенных более или менее сагиттально, которые или находятся в одной капсуле (например, два мыщелка бедренной кости, участвующие в коленном суставе), или располагаются в разных суставных капсулах, как в атлантозатылочном сочленении. Поскольку в мыщелковом суставе головки не имеют правильной конфигурации эллипса, вторая ось не обязательно будет горизонтальной, как это характерно для типичного эллипсовидного сустава; она может быть и вертикальной (коленный сустав). Если мыщелки расположены в разных суставных капсулах, то такой мыщелковый сустав близок по функции к эллипсовидному (атлантозатылочное сочленение). Если же мыщелки сближены и находятся в одной капсуле, как, например, в коленном суставе, то суставная головка в целом напоминает лежачий цилиндр (блок), рассеченный посередине (пространство между мыщелками). В этом случае мыщелковый сустав по функции будет ближе к блоковидному.

3. Седловидный сустав, art. sellaris (пример - запястно-пястное сочлене ние I пальца). Сустав этот образован 2 седловидными сочленовными поверхностями, сидящими "верхом" друг на друге, из которых одна движется вдоль и поперек другой. Благодаря этому в нем совершаются движения вокруг двух взаимно перпендикулярных осей: фронтальной (сгибание и разгибание) и сагиттальной (отведение и приведение). В двухосных суставах возможен также переход движения с одной оси на другую, т. е. круговое движение (circumductio).

Многоосные суставы.

1. Шаровидные. Шаровидный сустав, art. spheroidea (пример - плечевой сустав). Одна из суставных поверхностей образует выпуклую, шаровидной формы головку, другая - соответственно вогнутую суставную впадину. Теоретически движение может совершаться вокруг множества осей, соответствующих радиусам шара, но практически среди них обыкновенно различают три главные оси, перпендикулярные друг другу и пересекающиеся в центре головки: 1) поперечную (фронтальную), вокруг которой происходит сгибание, flexio, когда движущаяся часть образует с фронтальной плоскостью угол, открытый кпереди, и разгибание, extensio, когда угол будет открыт кзади; 2) переднезаднюю (сагиттальную), вокруг которой совершаются отведение, abductio, и приведение, adductio; 3) вертикальную, вокруг которой происходит вращение, rotatio, внутрь, pronatio, и наружу, supinatio. При переходе с одной оси на другую получается круговое движение, circumductio. Шаровидный сустав - самый свободный из всех суставов. Так как величина движения зависит от разности площадей суставных поверхностей, то суставная ямка в таком суставе мала сравнительно с величиной головки. Вспомогательных связок у типичных шаровидных суставов мало, что определяет свободу их движений. Разновидность шаровидного сочленения - чашеобразный сустав, art. cotylica (cotyle, греч. - чаша). Суставная впадина его глубока и охватывает большую часть головки. Вследствие этого движения в таком суставе менее свободны, чем в типичном шаровидном суставе; образец чашеобразного сустава мы имеем в тазобедренном суставе, где такое устройство способствует большей устойчивости сустава.

2. Плоские суставы, art. plana (пример - artt. intervertebrales), имеют почти плоские суставные поверхности. Их можно рассматривать как поверхности шара с очень большим радиусом, поэтому движения в них совершаются вокруг всех трех осей, но объем движений вследствие незначительной разности площадей суставных поверхностей небольшой.

Связки в многоосных суставах располагаются со всех сторон сустава.

Тугие суставы - амфиартрозы. Под этим названием выделяется группа сочленений с различной формой суставных поверхностей, но сходных по другим признакам: они имеют короткую, туго натянутую суставную капсулу и очень крепкий, нерастягивающийся вспомогательный аппарат, в частности короткие укрепляющие связки (пример - крестцово-подвздошный сустав).

Вследствие этого суставные поверхности тесно соприкасаются друг с другом, что резко ограничивает движения. Такие малоподвижные сочленения и называют тугими суставами - амфиартрозами (BNA). Тугие суставы смягчают толчки и сотрясения между костями.
К этим суставам можно отнести также плоские суставы, art. plana, у которых, как отмечалось, плоские суставные поверхности равны по площади. В тугих суставах движения имеют скользящий характер и крайне незначительны.

Биомеханика суставов.

В организме живого человека суставы играют тройную роль: 1) они содействуют сохранению положения тела; 2) участвуют в перемещении частей тела в отношении друг друга и 3) являются органами локомоции (передвижения) тела в пространстве.
Так как в процессе эволюции условия для мышечной деятельности были различными, то и получились сочленения различных формы и функции. По форме суставные поверхности могут рассматриваться как отрезки геометрических тел вращения: цилиндра, вращающегося вокруг одной оси; эллипса, вращающегося вокруг двух осей, и шара - вокруг трех и более осей.

В суставах движения совершаются вокруг трех главных осей.

Различают следующие виды движений в суставах:
1. Движение вокруг фронтальной (горизонтальной) оси - сгибание (flexio), т. е. уменьшение угла между сочленяющимися костями, и разгибание (extensio), т. е. увеличение этого угла.
2. Движения вокруг сагиттальной (горизонтальной) оси - приведение (adductio), т. е. приближение к срединной плоскости, и отведение (abductio), т. е. удаление от нее.
3. Движения вокруг вертикальной оси, т. е. вращение (rotatio): кнутри (pronatio) и кнаружи (supinatio).
4. Круговое движение (circumductio), при котором совершается переход с одной оси на другую, причем один конец кости описывает круг, а вся кость - фигуру конуса.

Возможны и скользящие движения суставных поверхностей, а также удаление их друг от друга, как это, например, наблюдается при растягивании пальцев.

Характер движения в суставах обусловливается формой суставных поверхностей. Объем движения в суставах зависит от разности в величине сочленяющихся поверхностей. Если, например, суставная ямка представляет по своему протяжению дугу в 140°, а головка в 210°, то дуга движения будет равна 70°. Чем больше разность площадей суставных поверхностей, тем больше дуга (объем) движения, и наоборот. Движения в суставах, кроме уменьшения разности площадей сочленовных поверхностей, могут ограничиваться еще различного рода тормозами, роль которых выполняют некоторые связки, мышцы, костные выступы и т. п. Так как усиленная физическая (силовая) нагрузка, вызывающая рабочую гипертрофию костей, связок и мышц, приводит к разрастанию этих образований и ограничению подвижности, то у различных спортсменов замечается разная гибкость в суставах в зависимости от вида спорта. Например, плечевой сустав имеет больший объем движений у легкоатлетов и меньший у тяжелоатлетов. Если тормозящие приспособления в суставах развиты особенно сильно, то движения в них резко ограничены. Такие суставы называют тугими..

На величину движений влияют и внутрисуставные хрящи, увеличивающие разнообразие движений. Так, в височно-нижнечелюстном суставе, относящемся по форме суставных поверхностей к двуосным суставам, благодаря присутствию внутрисуставного диска возможны троякого рода движения.

Закономерности расположения связок. Укрепляющей частью сустава являются связки, ligamenta, которые направляют и удерживают работу суставов; отсюда их делят на направляющие и удерживающие. Число связок в теле человека велико, поэтому, чтобы лучше их изучить и запомнить, необходимо знать общие законы их расположения.
1. Связки направляют движение суставных поверхностей вокруг определенной оси вращения данного сустава и потому распределяются в каждом суставе в зависимости от числа и положения его осей.
2. Связки располагаются: а) перпендикулярно данной оси вращения и б) преимущественно по концам ее.
3. Они лежат в плоскости данного движения сустава. Так, в межфаланговом суставе с одной фронтальной осью вращения направляющие связки располагаются по бокам ее (ligg. collateralia) и вертикально. В локтевом двуосном суставе ligg. collateralia также идут вертикально, перпендикулярно фронтальной оси, по концам ее, a lig. anulare располагается горизонтально, перпендикулярно вертикальной оси. Наконец, в многоосном тазобедренном суставе связки располагаются в разных направлениях.

 

ПОЗВОНОЧНЫЙ СТОЛБ КАК ЦЕЛОЕ

Позвоночный столб является частью осевого скелета и представляет важнейшую опорную конструкцию тела, он поддерживает голову, и к нему прикрепляются конечности. От позвоночного столба зависят движения туловища. Позвоночный столб выполняет также защитную функцию по отношению к спинному мозгу, который располагается в позвоночном канале. Указанные функции обеспечиваются сегментарным строением позвоночного столба, в котором чередуются жесткие и подвижно-эластические элементы.

Длина позвоночного столба у взрослого мужчины среднего роста (170 см) составляет примерно 73 см, причем на шейный отдел приходится 13 см, на грудной - 30 см, на поясничный - 18 см, на крестцово-копчиковый - 12 см. Позвоночный столб у женщин в среднем на 3-5 см короче и составляет 68-69 см. Длина позвоночного столба составляет около 2/5 всей длины тела взрослого человека. В старческом возрасте длина позвоночного столба уменьшается примерно на 5 см и больше вследствие увеличения изгибов позвоночного столба и уменьшения толщины межпозвоночных дисков.

В позвоночном столбе выделяют шейную, грудную, поясничную, крестцовую и копчиковую части. Первые три состоят из разделенных позвонков, связанных между собой сложной системой соединений. В двух последних частях происходит полное или неполное слияние костных элементов, что обусловлено их преимущественно опорной функцией.

Характерной особенностью позвоночного столба человека является его S-образная форма, обусловленная наличием четырех изгибов. Два из них обращены выпуклостью вперед - это шейный и поясничный лордозы, и два обращены назад - грудной и крестцовый кифозы.

Изгибы позвоночного столба намечаются во внутриутробном периоде. У новорожденного позвоночник имеет небольшую дорсальную изогнутость со слабовыраженными лордозом и кифозом. После рождения форма позвоночного столба изменяется в связи с развитием статики тела. Шейный лордоз появляется, когда ребенок начинает держать голову, его формирование связано с напряжением шейных и спинных мышц. Сидение усиливает кифоз грудной части позвоночника. Выпрямление тела, стояние и хождение вызывают образование поясничного лордоза. После рождения усиливается характерная для человека изогнутость крестца, которая имеется уже у плода 5 месяцев. Окончательное моделирование шейного и грудного изгибов происходит к 7 годам, а поясничный лордоз полностью развивается в период полового созревания. Наличие изгибов повышает рессорные свойства позвоночного столба.

Выраженность изгибов позвоночного столба индивидуально изменчива. У женщин поясничный лордоз выражен более отчетливо, чем у мужчин.

От формы позвоночного столба зависит осанка человека. Различают три формы осанки:

1) нормальную,

2) с резко выраженными изгибами спины,

3) со сглаженными изгибами (так называемая «круглая спина»).

Увеличение грудного кифоза приводит к сутулости. К 50 годам изгибы позвоночника начинают сглаживаться. У некоторых людей в старости развиваются общий кифоз позвоночного столба. Причиной этих изменений осанки является уплощение межпозвоночных дисков, ослабление связочного аппарата позвоночника, снижение тонуса мышц-разгибателей спины. Этому способствует сидячий образ жизни, неправильный режим работы и отдыха. Физические упражнения позволяют долго сохранять форму позвоночника и хорошую осанку. Недаром у военных и спортсменов в пожилом возрасте сохраняется правильная осанка тела.

 

СОЕДИНЕНИЕ ПОЗВОНКОВ И ДВИЖЕНИЯ ПОЗВОНОЧНОГО СТОЛБА

Позвонки соединены между собой как непрерывно, посредством хрящевых и фиброзных соединений, так и с помощью суставов. Между телами позвонков располагаются межпозвоночные диски. Каждый диск состоит из фиброзного кольца, расположенного по периферии, и студенистого ядра, занимающего центральную часть диска. Внутри диска часто имеется небольшая полость. Фиброзное кольцо построено из пластинок, расположение волокон в которых сходно с ориентацией волокон в остеонах. Студенистое ядро состоит из слизистой ткани и может изменять свою форму. При нагрузке позвоночного столба повышается внутреннее давление в ядре, однако оно не может сжиматься. Межпозвоночный диск в целом играет роль амортизатора при движениях, благодаря нему происходит равномерное распределение сил между позвонками. Через межпозвоночные диски передается до 80% веса вышележащих частей тела.

Наибольшая высота отдельных дисков в шейном отделе позвоночного столба 5-6 мм, в грудном – 3-4 мм, в поясничном – 10-12 мм. Толщина диска меняется в переднезаднем направлении: так между грудными позвонками диск тоньше спереди, между шейными и поясничными позвонками, наоборот, - тоньше сзади.

Предельная прочность межпозвоночных дисков при сжатии составляет в среднем возрасте 69-137 кг/см2, тогда как у тел позвонков она составляет всего 26 кг/см2. Поэтому при чрезмерных нагрузках, как, например, у летчиков при катапультировании, чаще повреждаются тела позвонков, чем соединяющие их диски.

Связочный аппарат позвоночного столба играет большую роль в его стабилизации. Выпрямленное положение тела поддерживается при небольшой активности собственных мышц спины. При максимальном сгибании туловища эти мышцы расслабляются, и вся нагрузка падает на связки. Поэтому поднятие тяжестей в таком положении опасно для связок и суставов позвоночника.

Движения позвоночного столба осуществляются за счет межпозвоночных дисков и дугоотростчатых суставов. Последние образованы суставными отростками соседних позвонков и относятся к плоским суставам. Форма суставных поверхностей допускает комбинированное скольжение в различных направлениях. Пара дугоотростчатых соединений вместе с межпозвоночным диском образует «сегмент движения» позвоночного столба. Движения в сегментах ограничиваются связками, суставными и остистыми отростками и другими факторами, поэтому объем движений в одном сегменте невелик. Однако в реальных движениях принимают участие многие сегменты, и суммарная их подвижность весьма значительна.

В позвоночном столбе при действии на него скелетных мышц возможны следующие движения: сгибание и разгибание, отведение и приведение (боковое сгибание), скручивание (вращение) и круговое движение.

Сгибание и разгибание происходит вокруг фронтальной оси. При сгибании тела позвонков наклоняются вперед, остистые отростки удаляются друг от друга. Передняя продольная связка расслабляется, а натяжение задней продольной связки, желтых связок, межостистых и надостной связок тормозят это движение. При разгибании позвоночный столб отклоняется назад, при этом расслабляются все его связки кроме передней продольной, которая при натяжении тормозит разгибание позвоночного столба.

Отведение и приведение совершаются вокруг сагиттальной. При отведении позвоночного столба натяжение желтых связок, капсул дугоотростчатых суставов и межпоперечных связок, расположенных на противоположной стороне, ограничивают это движение.

Вращение позвоночного столба имеет общий объем до 120º. При вращении студенистое ядро межпозвоночных дисков играет роль суставной головки, а натяжение фиброзных колец межпозвоночных дисков и желтых связок тормозит это движение.

Направление и амплитуда движений в различных частях позвоночного столба неодинаковы. Наибольшей подвижностью обладают шейные позвонки. Особое устройство имеют здесь соединения атланта и осевого позвонка. Образуемые ими атлантозатылочный и атлантоосевой суставы составляют в совокупности сложный комбинированный многоосный сустав, в котором происходят движения головы во всех направлениях. Атлант играет роль костного мениска.

Соединения атланта и осевого позвонка дополняются высокодифференцированным связочным аппаратом. Необходимо особо выделить поперечную связку атланта, которая образует синовиальное соединение с зубом осевого позвонка и препятствует его смещению назад, в просвет позвоночного канала, где располагается спинной мозг. Разрывы связок и вывихи в атлантоосевом суставе представляют смертельную опасность ввиду возможного повреждения спинного мозга. Движения между остальными шейными позвонками происходят вокруг всех трех осей. Объем движений увеличивается благодаря относительной толщине межпозвоночных дисков. Сгибание вперед сопровождается скольжением тел позвонков, так что вышележащий позвонок может перегибаться через край нижележащего.

Подвижность грудных позвонков ограничивается тонкими межпозвоночными дисками, грудной клеткой и расположением суставных и остистых отростков.

В поясничной части позвоночного столба толстые межпозвоночные диски допускают сгибание, разгибание и боковое сгибание. Вращение здесь почти невозможно ввиду расположения суставных отростков в сагиттальной плоскости. Наиболее свободны движения между нижними поясничными позвонками. Здесь находится центр большинства общих движений туловища.

Характерным для позвоночного столба является сочетание вращения с боковым сгибанием. Эти движения возможны в большей степени в верхних отделах позвоночника и сильно ограничены в нижних его отделах. В грудной части при боковом сгибании остистые отростки поворачиваются в сторону вогнутости позвоночника, а в поясничной части, наоборот, в сторону выпуклости. Максимум бокового сгибания приходится на поясничный отдел и его соединение с грудным отделом позвоночника. Сочетанное вращение выражается поворотом тел позвонков в сторону сгибания.

Некоторой подвижностью обладает также крестцово-копчиковое соединение у молодых людей, особенно у женщин. Это имеет существенное значение при родах, когда под давлением головки плода копчик отклоняется назад да 1-2 см и увеличивается выход из полости таза.

Объем движений позвоночного столба значительно уменьшается с возрастом. Признаки старения появляются здесь раньше и сильнее выражены, чем в других частях скелета. К ним относится дегенерация межпозвоночных дисков и суставных хрящей. Межпозвоночные диски становятся более волокнистым и, разрыхляются, утрачивают свою упругость и как бы выдавливаются за пределы позвонков. Имеет место обызвествление хрящей, а в некоторых случаях в центре дисков появляются окостенения, что приводит к срастанию соседних позвонков. Вслед за дисками изменяются позвонки. Тела позвонков становятся порозными, по их краям образуются остеофиты. Высота тел позвонков уменьшается, нередко они приобретают клиновидную форму, что приводит к уплощению поясничного лордоза. Ширина позвонков во фронтальной плоскости увеличивается по верхнему и нижнему краям; позвонки принимают вид «катушкообразных». Разрастание кости происходит по краям суставных поверхностей позвонков. Одним из наиболее частых проявлений старения позвоночного столба является окостенение передней продольной связки, которое хорошо выявляется на рентгенограммах.

 

ТАЗ КАК ЦЕЛОЕ

Тазовые кости и крестец, соединяясь с помощью крестцово-подвздошного сустава и лобкового симфиза, образуют таз. Таз представляет собой костное кольцо, внутри которого находится полость, содержащая внутренности. Тазовые кости с развернутыми в стороны подвздошными крыльями представляют надежную опору для позвоночного столба и брюшных внутренностей. Таз делят на 2 отдела: большой таз и малый таз. Границей между ними является пограничная линия.

Большой таз ограничен сзади телом V поясничного позвонка, по бокам – крыльями подвздошных костей. Спереди большой таз стенок не имеет.

Малый таз представляет собой суженный книзу костный канал. Верхняя апертура малого таза ограничена пограничной линией, а нижняя апертура (выход из малого таза) ограничена сзади копчиком, по бокам – крестцово-бугорными связками, седалищными буграми, ветвями седалищных костей, нижними ветвями лобковых костей, а спереди лобковым симфизом. Задняя стенка малого таза образована крестцом и копчиком, передняя – нижними и верхними ветвями лобковых костей и лобковым симфизом. С боков полость малого таза ограничена внутренней поверхностью тазовых костей ниже пограничной линии, крестцово-бугорной и крестцово-остистой связками. На боковой стенке малого таза находятся большое и малое седалищные отверстия.

При вертикальном положении тела человека верхняя апертура таза наклонена кпереди и вниз, образуя с горизонтальной плоскостью острый угол: у женщин – 55-60°, у мужчин – 50-55°.

В строении таза взрослого человека четко выражены половые особенности. Таз у женщин ниже и шире, чем у мужчин. Расстояние между остями и гребнями подвздошных костей у женщин больше, так как крылья подвздошных костей у них более развернуты в стороны. Мыс у женщин меньше выступает вперед, чем у мужчин, поэтому верхняя апертура женского таза имеет более округлую форму. Угол схождения нижних ветвей лобковых костей у женщин составляет 90-100°, а у мужчин – 70-75°. Полость малого таза у мужчин имеет ясно выраженную воронкообразную форму, у женщин полость таза приближается к цилиндру. У мужчин таз более высок и узок, а у женщин он шире и короче.

Для родового процесса большое значение имеют размеры и форма таза. Знание размеров таза необходимо для предсказания течения родов.

При измерении большого таза определяют 3 размера:

1. Расстояние между двумя передними верхними подвздошными остями (distantia spinarum) – 25-27 см.

2. Расстояние между гребнями подвздошных костей (distantia cristarum) – 28-29 см.

3. Расстояние между большими вертелами бедренных костей (distantia trochanterica) – 30-32 см.

При измерении малого таза определяют следующие размеры:

1. Наружный прямой размер – расстояние от симфиза до углубления между V поясничным и I крестцовым позвонками – 20-21 см. Для определения истинного прямого размера входа в малый таз, истинной, или гинекологической, конъюгаты (расстояние между мысом и наиболее выступающей кзади точкой лобкового симфиза) вычитают 9.5-10 см, получают 11 см.

2. Расстояние между передневерхней и задневерхней остями подвздошной кости (боковая конъюгата) – 14.5-15 см.

3. Для определения поперечного размера входа в малый таз (13.5-15 см) делят distantia cristarum пополам или вычитают из него 14-15 см.

4. Размер выхода из малого таза – расстояние между внутренними краями седалищных бугров (9.5 см) плюс 1.5 см на толщину мягких тканей – всего 11 см.

5. Прямой размер выхода из малого таза – расстояние между копчиком и нижним краем симфиза (12-12.5 см) и минус 1.5 см на толщину крестца и мягких тканей – всего 9-11 см.

 

СТОПА КАК ЦЕЛОЕ

Кости стопы обладают значительно меньшей подвижностью, чем кости кисти, так как приспособлена для выполнения опорной функции. Десять костей стопы: ладьевидная, три клиновидные, кубовидная, пять плюсневых костей - соединены между собой с помощью «тугих» суставов и служат твердой основой стопы. Согласно концепции Дж.Пизани, в анатомо-функциональном отношении стопа делится на пяточную и таранную части. Пяточная часть, в которую входит пяточная, кубовидная, IV и V плюсневые кости, выполняет преимущественно пассивную статическую функцию. Таранная часть, представленная таранной, ладьевидной, клиновидными, I, II, III плюсневыми костями, несет активную статическую функцию.

Кости стопы, сочленяясь между собой, образуют 5 продольных и 2 поперечных (предплюсневый и плюсневый) свода.

I - III продольные своды стопы не касаются плоскости опоры при нагрузке на стопу, поэтому они являются рессорными, IV, V - прилежат к площади опоры, их называют опорными. Предплюсневый свод находится в области костей предплюсны, плюсневый - в области головок плюсневых костей. Причем в плюсневом своде плоскости опоры касаются головки только первой и пятой плюсневых костей. Благодаря сводчатому строению стопа опирается не всей подошвенной поверхностью, а имеет постоянные 3 точки опоры: пяточный бугор сзади и головки I и V плюсневых костей спереди. Все продольные своды стопы начинаются на пяточной кости. И отсюда линии сводов направляются вперед вдоль плюсневых костей. Наиболее длинным и высоким является 2-й продольный свод, а наиболее низким и коротким - 5-й. На уровне наиболее высоких точек продольных сводов формируется поперечный свод.

Своды стопы удерживаются формой образующих их костей, связками (пассивные затяжки сводов топы) и мышцами (активные затяжки). Для укрепления продольных сводов в качестве пассивных затяжек большое значение имеют длинная подошвенная связка, подошвенная пяточно-ладьевидная связка, подошвенный апоневроз. Поперечный свод стопы удерживается поперечно расположенными связками подошвы (глубокой поперечной плюсневой связкой, межкостными плюсневыми связками). Мышцы также способствуют удержанию сводов стопы. Продольно расположенные мышцы и их сухожилия, прикрепляющиеся к фалангам пальцев, укорачивают стопу и тем самым способствуют «затяжке» ее продольных сводов, а поперечно лежащие мышцы, суживая стопу, укрепляют ее поперечный свод. При расслаблении активных и пассивных затяжек своды стопы опускаются, стопа уплощается, развивается плоскостопие.

Благодаря сводчатому строению стопы тяжесть тела равномерно распределяется на всю стопу, уменьшаются сотрясения тела при ходьбе, беге, прыжках, так как своды играют роль амортизаторов. Своды также способствуют приспособлению стопы к ходьбе и бегу по неровной местности.

Контрольные вопросы к лекции:

1. Развитие соединений костей в филогенезе.

2. Классификация соединения костей.

3. Функциональная анатомия синдесмозов.

4. Функциональная анатомия синхродрозов, синостозов, полусуставов.

5. Классификация суставов по количеству суставных поверхностей и форме суставных поверхностей.

6. Классификация суставов по количеству осей движения.

7. Общая характеристика комбинированных суставов и комплексных суставов.

8. Строение главных и вспомогательных элементов суставов.

9. Основные закономерности биомеханики суставов.

10Функционально-морфологические особенности позвоночного столба как целого.

.Лекция 7

Учение о мышцах. Общая миология.

Цель лекции. Рассмотреть закономерности строения мышцы как органа. Рассмотреть отдельные элементы биомеханики.

план лекции:

1. Рассмотреть классификацию мышц.

2. Рассмотреть общую характеристику отдельных функциональных мышечных групп: агонисты, антагонисты, синергисты.

3. Раскрыть основные закономерности строения и расположения мышц.

4. Раскрыть строение мышцы как органа.

6. Рассмотреть абсолютную и относительную силу мышц; анатомический, физиологический поперечник мышц.

7. Рассмотреть нейромоторную единицу.

8. Раскрыть работу опорно-двигательного аппарата по принципу рычагов.

9. Раскрыть роль и значение фасций в мышечной системе.

10.Роль выдающегося русского ученого Н.И. Пирогова в изучении фасций.

11Рассмотреть принципиальную схему строения синовиального влагалища.

12.Значение синовиального влагалища в деятельности мышц и клиническое значение синовиальных влагалищ.

 

КЛАССИФИКАЦИЯ МЫШЦ

Многочисленные мышцы (их насчитывается до 400) имеют различную форму, строение, функцию и развитие

По форме различают мышцы длинные, короткие и широкие.

Длинные мышцы соответствуют длинным рычагам движения и потому встречаются главным образом на конечностях. Они имеют веретенообразную форму, причем средняя их часть называется брюшком, venter, один из концов, соответствующий началу мышцы, носит название головки, caput, а другой — хвост, cauda. Сухожилия {tendo) длинных мышц имеют вид узкой ленты. Некоторые длинные мышцы начинаются несколькими головками (многоглавые) на различных костях, что усиливает их опору. Встречаются мышцы двуглавые, biceps, трехглавые, triceps, и четырехглавые, quadriceps. В случае слияния мышц разного происхождения или развившихся из нескольких миотомов между ними остаются промежуточные сухожилия, сухожильные перемычки, intersectiones tendineae. Такие мышцы (многобрюшные) имеют два брюшка (например, m. digastricus) или больше (например, m. rectus abdominis). Варьирует также число их сухожилий, которыми заканчиваются мышцы. Так, сгибатели и разгибатели пальцев рук и ног имеют по нескольку сухожилий (до 4), благодаря чему сокращение одного мышечного брюшка дает двигательный эффект сразу на несколько пальцев, чем достигается экономия в работе мышц.

Широкие мышцы располагаются преимущественно на туловище и имеют расширенное сухожилие, называемое сухожильным растяжением, или апоневрозом, aponeurosis.

Встречаются также и другие формы мышц: квадратная (m. quadratus), треугольная (triangularis), пирамидальная (m. pyramidalis), круглая (m. teres), дельтовидная (m. deltoideus), зубчатая (га. serratus), камбаловидная (m. so-leus) и др.

По направлению волокон, обусловленному функционально, различаются мышцы с прямыми параллельными волокнами (m. rectus), с косыми волокнами (т. obliquus), с поперечными (т. transversus), с круговыми (т. orbicularis). Последние образуют жомы, или сфинктеры, окружающие отверстия. Если косые волокна присоединяются к сухожилию с одной стороны, то получается так называемая одноперистая мышца, а если с двух сторон, то двуперистая. Особое отношение волокон к сухожилию наблюдается в полусухожильной (m. semitendinosus) и полуперепончатой (m. semimembranosus) мышцах.

По функции мышцы делятся на сгибатели (flexores), разгибатели (ехtensores), приводящие (adductores), отводящие (abductores), вращатели (rotatores) кнутри (pronatores) и кнаружи (supinatores).

По отношению к суставам, через которые (один, д



Дата добавления: 2016-09-06; просмотров: 38802;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.045 сек.