Действия над матрицами.


Пусть в плоскости даны 2 вектора, каждый имеет по 2 координаты, тогда можно построить матрицу 2 порядка.

Матрица, соответствующая этой векторной системе .

Аналогично, если дано 3 вектора в пространстве - можно построить матрицу 3 порядка.

 

 

Теперь рассмотрим произвольные матрицы.

Определение матрицы. Матрицей размера называется прямоугольная таблица, состоящая из чисел (либо других объектов, например, функций), содержащая m строк и n столбцов.

Каждый элемент обозначается , где это номер строки, в которой он расположен, а - номер столбца.

Обратите внимание: количество строк - это то же самое, что количество элементов в столбце, а количество столбцов равно количеству элементов в строке (заметим, что от каждого элемента 1-й строки начинается столбец, то есть сколько чисел в строке, столько и столбцов).

Если , то есть матрица А имеет размер то она называется квадратной матрицей порядка n.

Примеры матриц из жизни:

1. Таблица результатов ЕГЭ по нескольким предметам в группе учеников.

2. Расписание занятий. День недели и номер пары, каждый элемент - номер аудитории в этот день в это время.

Сложение и вычитание матриц размера .

Эти операции определяются поэлементно, то есть суммируется или вычитается каждая соответствующая пара элементов и .

Пример: + = .

Умножение матрицы на константу определяется следующим образом. В матрице все элементы умножены на коэффициент , то есть равны .

Транспонирование матрицы. Это довольно простая операция, и она вводится так. Если все пары элементов и поменять местами, то получившаяся матрица называется транспонированной, она обозначается .



Дата добавления: 2020-12-11; просмотров: 338;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.